A fusion peptide in preS1 and the human protein-disulfide isomerase ERp57 are involved in HBV membrane fusion process

  1. Jimena Pérez-Vargas
  2. Elin Teppa
  3. Fouzia Amirache
  4. Bertrand Boson
  5. Rémi Pereira de Oliveira
  6. Christophe Combet
  7. Anja Böckmann
  8. Floriane Fusil
  9. Natalia Freitas  Is a corresponding author
  10. Alessandra Carbone  Is a corresponding author
  11. François-Loïc Cosset  Is a corresponding author
  1. École normale supérieure de Lyon, France
  2. Sorbonne Université, France
  3. Centre International de Recherche en Infectiologie, France
  4. Cancer Research Center of Lyon (CRCL), France
  5. University of Lyon, France
  6. Sorbonne Universités, UPMC Univ. Paris 06, France

Abstract

Cell entry of enveloped viruses relies on the fusion between the viral and plasma or endosomal membranes, through a mechanism that is triggered by a cellular signal. Here we used a combination of computational and experimental approaches to unravel the main determinants of hepatitis B virus (HBV) membrane fusion process. We discovered that ERp57 is a host factor critically involved in triggering HBV fusion and infection. Then, through modelling approaches, we uncovered a putative allosteric cross-strand disulfide (CSD) bond in the HBV S glycoprotein and we demonstrate that its stabilization could prevent membrane fusion. Finally, we identified and characterized a potential fusion peptide in the preS1 domain of the HBV L glycoprotein. These results underscore a membrane fusion mechanism that could be triggered by ERp57, allowing a thiol/disulfide exchange reaction to occur and regulate isomerization of a critical CSD, which ultimately leads to the exposition of the fusion peptide.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for figures 1-3, 5-7 and 9.

Article and author information

Author details

  1. Jimena Pérez-Vargas

    École normale supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Elin Teppa

    UMR 7238, Biologie Computationnelle et Quantitative, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Fouzia Amirache

    École normale supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Bertrand Boson

    Centre International de Recherche en Infectiologie, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Rémi Pereira de Oliveira

    École normale supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Christophe Combet

    U1052, Cancer Research Center of Lyon (CRCL), Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7348-3520
  7. Anja Böckmann

    Molecular Microbiology and Structural Biochemistry, University of Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8149-7941
  8. Floriane Fusil

    École normale supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Natalia Freitas

    École normale supérieure de Lyon, Lyon, France
    For correspondence
    natalia.bezerra-de-freitas@ens-lyon.fr
    Competing interests
    The authors declare that no competing interests exist.
  10. Alessandra Carbone

    UMR 7238, Biologie Computationnelle et Quantitative, Sorbonne Universités, UPMC Univ. Paris 06, Paris, France
    For correspondence
    Alessandra.Carbone@lip6.fr
    Competing interests
    The authors declare that no competing interests exist.
  11. François-Loïc Cosset

    École normale supérieure de Lyon, Lyon, France
    For correspondence
    flcosset@ens-lyon.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8842-3726

Funding

ANRS (ECTZ160643)

  • François-Loïc Cosset

ANR (ANR-11-LABX-0048)

  • François-Loïc Cosset

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with the European Union guidelines for approval of the protocols by the local ethics committee (Authorization Agreement C2EA-15, "Comité Rhône-Alpes d'Ethique pour l'Expérimentation Animale", Lyon, France - APAFIS#27316-2020060810332115 v4).

Copyright

© 2021, Pérez-Vargas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,071
    views
  • 350
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jimena Pérez-Vargas
  2. Elin Teppa
  3. Fouzia Amirache
  4. Bertrand Boson
  5. Rémi Pereira de Oliveira
  6. Christophe Combet
  7. Anja Böckmann
  8. Floriane Fusil
  9. Natalia Freitas
  10. Alessandra Carbone
  11. François-Loïc Cosset
(2021)
A fusion peptide in preS1 and the human protein-disulfide isomerase ERp57 are involved in HBV membrane fusion process
eLife 10:e64507.
https://doi.org/10.7554/eLife.64507

Share this article

https://doi.org/10.7554/eLife.64507

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Saugat Poudel, Jason Hyun ... Bernhard O Palsson
    Research Article

    The Staphylococcus aureus clonal complex 8 (CC8) is made up of several subtypes with varying levels of clinical burden; from community-associated methicillin-resistant S. aureus USA300 strains to hospital-associated (HA-MRSA) USA500 strains and ancestral methicillin-susceptible (MSSA) strains. This phenotypic distribution within a single clonal complex makes CC8 an ideal clade to study the emergence of mutations important for antibiotic resistance and community spread. Gene-level analysis comparing USA300 against MSSA and HA-MRSA strains have revealed key horizontally acquired genes important for its rapid spread in the community. However, efforts to define the contributions of point mutations and indels have been confounded by strong linkage disequilibrium resulting from clonal propagation. To break down this confounding effect, we combined genetic association testing with a model of the transcriptional regulatory network (TRN) to find candidate mutations that may have led to changes in gene regulation. First, we used a De Bruijn graph genome-wide association study to enrich mutations unique to the USA300 lineages within CC8. Next, we reconstructed the TRN by using independent component analysis on 670 RNA-sequencing samples from USA300 and non-USA300 CC8 strains which predicted several genes with strain-specific altered expression patterns. Examination of the regulatory region of one of the genes enriched by both approaches, isdH, revealed a 38-bp deletion containing a Fur-binding site and a conserved single-nucleotide polymorphism which likely led to the altered expression levels in USA300 strains. Taken together, our results demonstrate the utility of reconstructed TRNs to address the limits of genetic approaches when studying emerging pathogenic strains.

    1. Computational and Systems Biology
    Masaaki Uematsu, Jeremy M Baskin
    Tools and Resources

    Plasmid construction is central to life science research, and sequence verification is arguably its costliest step. Long-read sequencing has emerged as a competitor to Sanger sequencing, with the principal benefit that whole plasmids can be sequenced in a single run. Nevertheless, the current cost of nanopore sequencing is still prohibitive for routine sequencing during plasmid construction. We develop a computational approach termed Simple Algorithm for Very Efficient Multiplexing of Oxford Nanopore Experiments for You (SAVEMONEY) that guides researchers to mix multiple plasmids and subsequently computationally de-mixes the resultant sequences. SAVEMONEY defines optimal mixtures in a pre-survey step, and following sequencing, executes a post-analysis workflow involving sequence classification, alignment, and consensus determination. By using Bayesian analysis with prior probability of expected plasmid construction error rate, high-confidence sequences can be obtained for each plasmid in the mixture. Plasmids differing by as little as two bases can be mixed as a single sample for nanopore sequencing, and routine multiplexing of even six plasmids per 180 reads can still maintain high accuracy of consensus sequencing. SAVEMONEY should further democratize whole-plasmid sequencing by nanopore and related technologies, driving down the effective cost of whole-plasmid sequencing to lower than that of a single Sanger sequencing run.