1. Computational and Systems Biology
  2. Physics of Living Systems
Download icon

Topological signatures in regulatory network enable phenotypic heterogeneity in small cell lung cancer

  1. Lakshya Chauhan
  2. Uday Ram
  3. Kishore Hari
  4. Mohit Kumar Jolly  Is a corresponding author
  1. Indian Institute of Science, India
Research Article
  • Cited 2
  • Views 1,584
  • Annotations
Cite this article as: eLife 2021;10:e64522 doi: 10.7554/eLife.64522


Phenotypic (non-genetic) heterogeneity has significant implications for development and evolution of organs, organisms, and populations. Recent observations in multiple cancers have unravelled the role of phenotypic heterogeneity in driving metastasis and therapy recalcitrance. However, the origins of such phenotypic heterogeneity are poorly understood in most cancers. Here, we investigate a regulatory network underlying phenotypic heterogeneity in small cell lung cancer, a devastating disease with no molecular targeted therapy. Discrete and continuous dynamical simulations of this network reveal its multistable behavior that can explain co-existence of four experimentally observed phenotypes. Analysis of the network topology uncovers that multistability emerges from two teams of players that mutually inhibit each other but members of a team activate one another, forming a 'toggle switch' between the two teams. Deciphering these topological signatures in cancer-related regulatory networks can unravel their 'latent' design principles and offer a rational approach to characterize phenotypic heterogeneity in a tumor.

Data availability

Gene expression profiles of 52 SCLC cell lines were downloaded from Broad Institute's CCLE expression data. Data for GSE73160 was downloaded from NCBI website. All codes used to generate and analyze simulation data, and codes used to analyze gene expression data are available at : https://github.com/uday2607/CSB-SCLC

The following previously published data sets were used

Article and author information

Author details

  1. Lakshya Chauhan

    Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Uday Ram

    Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Kishore Hari

    Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Mohit Kumar Jolly

    Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6631-2109


Science and Engineering Research Board (SB/S2/RJN-049/2018)

  • Mohit Kumar Jolly

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sandeep Krishna, National Centre for Biological Sciences­‐Tata Institute of Fundamental Research, India

Publication history

  1. Received: November 1, 2020
  2. Accepted: March 16, 2021
  3. Accepted Manuscript published: March 17, 2021 (version 1)
  4. Version of Record published: March 31, 2021 (version 2)


© 2021, Chauhan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,584
    Page views
  • 239
  • 2

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Hannah R Meredith et al.
    Research Article

    Human mobility is a core component of human behavior and its quantification is critical for understanding its impact on infectious disease transmission, traffic forecasting, access to resources and care, intervention strategies, and migratory flows. When mobility data are limited, spatial interaction models have been widely used to estimate human travel, but have not been extensively validated in low- and middle-income settings. Geographic, sociodemographic, and infrastructure differences may impact the ability for models to capture these patterns, particularly in rural settings. Here, we analyzed mobility patterns inferred from mobile phone data in four Sub-Saharan African countries to investigate the ability for variants on gravity and radiation models to estimate travel. Adjusting the gravity model such that parameters were fit to different trip types, including travel between more or less populated areas and/or different regions, improved model fit in all four countries. This suggests that alternative models may be more useful in these settings and better able to capture the range of mobility patterns observed.

    1. Computational and Systems Biology
    Daniel Griffith, Alex S Holehouse
    Tools and Resources

    The rise of high-throughput experiments has transformed how scientists approach biological questions. The ubiquity of large-scale assays that can test thousands of samples in a day has necessitated the development of new computational approaches to interpret this data. Among these tools, machine learning approaches are increasingly being utilized due to their ability to infer complex nonlinear patterns from high-dimensional data. Despite their effectiveness, machine learning (and in particular deep learning) approaches are not always accessible or easy to implement for those with limited computational expertise. Here we present PARROT, a general framework for training and applying deep learning-based predictors on large protein datasets. Using an internal recurrent neural network architecture, PARROT is capable of tackling both classification and regression tasks while only requiring raw protein sequences as input. We showcase the potential uses of PARROT on three diverse machine learning tasks: predicting phosphorylation sites, predicting transcriptional activation function of peptides generated by high-throughput reporter assays, and predicting the fibrillization propensity of amyloid beta with data generated by deep mutational scanning. Through these examples, we demonstrate that PARROT is easy to use, performs comparably to state-of-the-art computational tools, and is applicable for a wide array of biological problems.