Glypicans define unique roles for the Hedgehog co-receptors Boi and Ihog in cytoneme-mediated gradient formation

  1. Eleanor Simon
  2. Carlos Jiménez-Jiménez
  3. Irene Seijo-Barandiarán
  4. Gustavo Aguilar
  5. David Sánchez-Hernández
  6. Adrián Aguirre
  7. Laura González-Méndez
  8. Pedro Ripoll
  9. Isabel Guerrero  Is a corresponding author
  1. Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Spain
  2. Growth and Development, Biozentrum, University of Basel, Switzerland

Abstract

The conserved family of Hedgehog (Hh) signaling proteins plays a key role in cell-cell communication during development, tissue repair and cancer progression, inducing distinct concentration-dependent responses in target cells located at short and long distances. One simple mechanism for long distance dispersal of the lipid modified Hh is the direct contact between cell membranes through filopodia-like structures known as cytonemes. Here we have analyzed in Drosophila the interaction between the glypicans Dally and Dally-like protein, necessary for Hh signaling, and the adhesion molecules and Hh coreceptors Ihog and Boi. We describe that glypicans are required to maintain the levels of Ihog, but not of Boi. We also show that the overexpression of Ihog, but not of Boi, regulates cytoneme dynamics through their interaction with glypicans, the Ihog fibronectin III domains being essential for this interaction. Our data suggest that the regulation of glypicans over Hh signaling is specifically given by their interaction with Ihog in cytonemes. Contrary to previous data, we also show that there is no redundancy of Ihog and Boi functions in Hh gradient formation, being Ihog, but not of Boi, essential for the long-range gradient.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Eleanor Simon

    Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Carlos Jiménez-Jiménez

    Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Irene Seijo-Barandiarán

    Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Gustavo Aguilar

    Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. David Sánchez-Hernández

    Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Adrián Aguirre

    Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Laura González-Méndez

    Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Pedro Ripoll

    Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Isabel Guerrero

    Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
    For correspondence
    iguerrero@cbm.csic.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6761-1218

Funding

Ministerio de Ciencia, Innovación y Universidades (BFU2014-59438-P)

  • Eleanor Simon
  • Irene Seijo-Barandiarán
  • Gustavo Aguilar
  • David Sánchez-Hernández
  • Adrián Aguirre
  • Laura González-Méndez
  • Isabel Guerrero

Ministerio de Ciencia, Innovación y Universidades (BFU2017-83789-P)

  • Eleanor Simon
  • Carlos Jiménez-Jiménez
  • David Sánchez-Hernández
  • Laura González-Méndez
  • Pedro Ripoll
  • Isabel Guerrero

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Steffen Scholpp, University of Exeter, United Kingdom

Version history

  1. Received: November 3, 2020
  2. Accepted: August 4, 2021
  3. Accepted Manuscript published: August 6, 2021 (version 1)
  4. Version of Record published: September 1, 2021 (version 2)

Copyright

© 2021, Simon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 997
    views
  • 179
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eleanor Simon
  2. Carlos Jiménez-Jiménez
  3. Irene Seijo-Barandiarán
  4. Gustavo Aguilar
  5. David Sánchez-Hernández
  6. Adrián Aguirre
  7. Laura González-Méndez
  8. Pedro Ripoll
  9. Isabel Guerrero
(2021)
Glypicans define unique roles for the Hedgehog co-receptors Boi and Ihog in cytoneme-mediated gradient formation
eLife 10:e64581.
https://doi.org/10.7554/eLife.64581

Share this article

https://doi.org/10.7554/eLife.64581

Further reading

    1. Cell Biology
    2. Developmental Biology
    Corey D Holman, Alexander P Sakers ... Patrick Seale
    Research Article

    The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.

    1. Cell Biology
    Tongtong Ma, Ruimin Ren ... Heng Wang
    Research Article

    Current studies on cultured meat mainly focus on the muscle tissue reconstruction in vitro, but lack the formation of intramuscular fat, which is a crucial factor in determining taste, texture, and nutritional contents. Therefore, incorporating fat into cultured meat is of superior value. In this study, we employed the myogenic/lipogenic transdifferentiation of chicken fibroblasts in 3D to produce muscle mass and deposit fat into the same cells without the co-culture or mixture of different cells or fat substances. The immortalized chicken embryonic fibroblasts were implanted into the hydrogel scaffold, and the cell proliferation and myogenic transdifferentiation were conducted in 3D to produce the whole-cut meat mimics. Compared to 2D, cells grown in 3D matrix showed elevated myogenesis and collagen production. We further induced fat deposition in the transdifferentiated muscle cells and the triglyceride content could be manipulated to match and exceed the levels of chicken meat. The gene expression analysis indicated that both lineage-specific and multifunctional signalings could contribute to the generation of muscle/fat matrix. Overall, we were able to precisely modulate muscle, fat, and extracellular matrix contents according to balanced or specialized meat preferences. These findings provide new avenues for customized cultured meat production with desired intramuscular fat contents that can be tailored to meet the diverse demands of consumers.