ARL3 activation requires the co-GEF BART and effector-mediated turnover

  1. Yasmin ElMaghloob
  2. Begoña Sot
  3. Michael J McIlwraith
  4. Esther Garcia
  5. Tamas Yelland
  6. Shehab Ismail  Is a corresponding author
  1. Beatson Institute for Cancer Research, United Kingdom
  2. IMDEA Nanoscience, Spain

Abstract

The ADP-ribosylation factor-like 3 (ARL3) is a ciliopathy G-protein which regulates the ciliary trafficking of several lipid-modified proteins. ARL3 is activated by its guanine exchange factor (GEF) ARL13B via an unresolved mechanism. BART is described as an ARL3 effector which has also been implicated in ciliopathies, although the role of its ARL3 interaction is unknown. Here we show that, at physiological GTP:GDP levels, human ARL3GDP is weakly activated by ARL13B. However, BART interacts with nucleotide-free ARL3 and, in concert with ARL13B, efficiently activates ARL3. In addition, BART binds ARL3GTP and inhibits GTP dissociation, thereby stabilising the active G-protein; the binding of ARL3 effectors then releases BART. Finally, using live cell imaging, we show that BART accesses the primary cilium and colocalises with ARL13B. We propose a model wherein BART functions as a bona fide co-GEF for ARL3 and maintains the active ARL3GTP, until it is recycled by ARL3 effectors.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for: Figures 1A and 1B, Figures 2B, 2C, 2D, 2E, and 2F, Figures 3A,3B, 3C, 3D, 3F, Figures 4A, 4B, and 4C and Figure 5B, 5C

Article and author information

Author details

  1. Yasmin ElMaghloob

    Structural biology, Beatson Institute for Cancer Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Begoña Sot

    Nanobiosystems, IMDEA Nanoscience, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael J McIlwraith

    Structural biology, Beatson Institute for Cancer Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Esther Garcia

    Structural biology, Beatson Institute for Cancer Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Tamas Yelland

    Structural biology, Beatson Institute for Cancer Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Shehab Ismail

    Structural biology, Beatson Institute for Cancer Research, Glasgow, United Kingdom
    For correspondence
    shehab.ismail@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4150-1077

Funding

Cancer Research UK (A17196)

  • Shehab Ismail

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, ElMaghloob et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,198
    views
  • 193
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasmin ElMaghloob
  2. Begoña Sot
  3. Michael J McIlwraith
  4. Esther Garcia
  5. Tamas Yelland
  6. Shehab Ismail
(2021)
ARL3 activation requires the co-GEF BART and effector-mediated turnover
eLife 10:e64624.
https://doi.org/10.7554/eLife.64624

Share this article

https://doi.org/10.7554/eLife.64624

Further reading

    1. Biochemistry and Chemical Biology
    Aleksandar Bartolome, Julia C Heiby ... Alessandro Ori
    Tools and Resources

    Proteasomes are essential molecular machines responsible for the degradation of proteins in eukaryotic cells. Altered proteasome activity has been linked to neurodegeneration, auto-immune disorders and cancer. Despite the relevance for human disease and drug development, no method currently exists to monitor proteasome composition and interactions in vivo in animal models. To fill this gap, we developed a strategy based on tagging of proteasomes with promiscuous biotin ligases and generated a new mouse model enabling the quantification of proteasome interactions by mass spectrometry. We show that biotin ligases can be incorporated in fully assembled proteasomes without negative impact on their activity. We demonstrate the utility of our method by identifying novel proteasome-interacting proteins, charting interactomes across mouse organs, and showing that proximity-labeling enables the identification of both endogenous and small-molecule-induced proteasome substrates.

    1. Biochemistry and Chemical Biology
    Brennan J Wadsworth, Marina Leiwe ... Randall S Johnson
    Research Article

    Several metabolites have been shown to have independent and at times unexpected biological effects outside of their metabolic pathways. These include succinate, lactate, fumarate, and 2-hydroxyglutarate. 2-Hydroxybutyrate (2HB) is a byproduct of endogenous cysteine synthesis, produced during periods of cellular stress. 2HB rises acutely after exercise; it also rises during infection and is also chronically increased in a number of metabolic disorders. We show here that 2HB inhibits branched-chain aminotransferase enzymes, which in turn triggers a SIRT4-dependent shift in the compartmental abundance of protein ADP-ribosylation. The 2HB-induced decrease in nuclear protein ADP-ribosylation leads to a C/EBPβ-mediated transcriptional response in the branched-chain amino acid degradation pathway. This response to 2HB exposure leads to an improved oxidative capacity in vitro. We found that repeated injection with 2HB can replicate the improvement to oxidative capacity that occurs following exercise training. Together, we show that 2-HB regulates fundamental aspects of skeletal muscle metabolism.