ARL3 activation requires the co-GEF BART and effector-mediated turnover

  1. Yasmin ElMaghloob
  2. Begoña Sot
  3. Michael J McIlwraith
  4. Esther Garcia
  5. Tamas Yelland
  6. Shehab Ismail  Is a corresponding author
  1. Beatson Institute for Cancer Research, United Kingdom
  2. IMDEA Nanoscience, Spain

Abstract

The ADP-ribosylation factor-like 3 (ARL3) is a ciliopathy G-protein which regulates the ciliary trafficking of several lipid-modified proteins. ARL3 is activated by its guanine exchange factor (GEF) ARL13B via an unresolved mechanism. BART is described as an ARL3 effector which has also been implicated in ciliopathies, although the role of its ARL3 interaction is unknown. Here we show that, at physiological GTP:GDP levels, human ARL3GDP is weakly activated by ARL13B. However, BART interacts with nucleotide-free ARL3 and, in concert with ARL13B, efficiently activates ARL3. In addition, BART binds ARL3GTP and inhibits GTP dissociation, thereby stabilising the active G-protein; the binding of ARL3 effectors then releases BART. Finally, using live cell imaging, we show that BART accesses the primary cilium and colocalises with ARL13B. We propose a model wherein BART functions as a bona fide co-GEF for ARL3 and maintains the active ARL3GTP, until it is recycled by ARL3 effectors.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for: Figures 1A and 1B, Figures 2B, 2C, 2D, 2E, and 2F, Figures 3A,3B, 3C, 3D, 3F, Figures 4A, 4B, and 4C and Figure 5B, 5C

Article and author information

Author details

  1. Yasmin ElMaghloob

    Structural biology, Beatson Institute for Cancer Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Begoña Sot

    Nanobiosystems, IMDEA Nanoscience, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael J McIlwraith

    Structural biology, Beatson Institute for Cancer Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Esther Garcia

    Structural biology, Beatson Institute for Cancer Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Tamas Yelland

    Structural biology, Beatson Institute for Cancer Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Shehab Ismail

    Structural biology, Beatson Institute for Cancer Research, Glasgow, United Kingdom
    For correspondence
    shehab.ismail@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4150-1077

Funding

Cancer Research UK (A17196)

  • Shehab Ismail

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, ElMaghloob et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,225
    views
  • 195
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasmin ElMaghloob
  2. Begoña Sot
  3. Michael J McIlwraith
  4. Esther Garcia
  5. Tamas Yelland
  6. Shehab Ismail
(2021)
ARL3 activation requires the co-GEF BART and effector-mediated turnover
eLife 10:e64624.
https://doi.org/10.7554/eLife.64624

Share this article

https://doi.org/10.7554/eLife.64624

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Eyal Paz, Sahil Jain ... Abdussalam Azem
    Research Article

    TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ~60% of the mitochondrial proteome. In this study, we characterized a TIMM50 disease-causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady-state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome. As TIMM50 mutations have been linked to severe neurological phenotypes, we aimed to characterize TIMM50 defects in manipulated mammalian neurons. TIMM50 knockdown in mouse neurons had a minor effect on the steady state level of most of the mitochondrial proteome, supporting the results observed in patient fibroblasts. Amongst the few affected TIM23 substrates, a decrease in the steady state level of components of the intricate oxidative phosphorylation and mitochondrial ribosome complexes was evident. This led to declined respiration rates in fibroblasts and neurons, reduced cellular ATP levels, and defective mitochondrial trafficking in neuronal processes, possibly contributing to the developmental defects observed in patients with TIMM50 disease. Finally, increased electrical activity was observed in TIMM50 deficient mice neuronal cells, which correlated with reduced levels of KCNJ10 and KCNA2 plasma membrane potassium channels, likely underlying the patients’ epileptic phenotype.