1. Neuroscience
Download icon

High-resolution imaging of skin deformation shows that afferents from human fingertips signal slip onset

  1. Benoit P Delhaye  Is a corresponding author
  2. Ewa Jarocka
  3. Allan Barrea
  4. Jean-Louis Thonnard
  5. Benoni Edin
  6. Philippe Lefèvre
  1. Université catholique de Louvain, Belgium
  2. Umeå University, Sweden
Research Article
  • Cited 0
  • Views 850
  • Annotations
Cite this article as: eLife 2021;10:e64679 doi: 10.7554/eLife.64679

Abstract

Human tactile afferents provide essential feedback for grasp stability during dexterous object manipulation. Interacting forces between an object and the fingers induce slip events that are thought to provide information about grasp stability. To gain insight into this phenomenon, we made a transparent surface slip against a fixed fingerpad while monitoring skin deformation at the contact. Using microneurography, we simultaneously recorded the activity of single tactile afferents innervating the fingertips. This unique combination allowed us to describe how afferents respond to slip events and to relate their responses to surface deformations taking place inside their receptive fields. We found that all afferents were sensitive to slip events, but FA-I afferents in particular faithfully encoded compressive strain rates resulting from those slips. Given the high density of FA-I afferents in fingerpads, they are well suited to detect incipient slips and to provide essential information for the control of grip force during manipulation.

Data availability

All the data used to create the figures in the manuscript are available for download following this permanent dropbox link:https://www.dropbox.com/sh/vhozyj03o401sud/AADGmJeXj4zAjL8RsSb5OInja?dl=0

Article and author information

Author details

  1. Benoit P Delhaye

    ICTEAM, Université catholique de Louvain, Louvain-la-Neuve, Belgium
    For correspondence
    delhayeben@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3974-7921
  2. Ewa Jarocka

    Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Allan Barrea

    ICTEAM, Université catholique de Louvain, Louvain-la-Neuve, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1094-4596
  4. Jean-Louis Thonnard

    Institute of Neurosciences, Université catholique de Louvain, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Benoni Edin

    Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Philippe Lefèvre

    ICTEAM; IoNS, Université catholique de Louvain, Louvain-la-Neuve, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2032-3635

Funding

European Space Agency (/)

  • Jean-Louis Thonnard
  • Philippe Lefèvre

PRODEX (/)

  • Jean-Louis Thonnard
  • Philippe Lefèvre

Swedish Research Council (VR 2016-01635)

  • Benoni Edin

Fonds De La Recherche Scientifique - FNRS (/)

  • Benoit P Delhaye

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Each subject provided written informed consent to the procedures, and the study was approved by the local ethics committee at the host institution (Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium).

Reviewing Editor

  1. Cornelius Schwarz

Publication history

  1. Received: November 6, 2020
  2. Accepted: April 13, 2021
  3. Accepted Manuscript published: April 22, 2021 (version 1)
  4. Version of Record published: June 1, 2021 (version 2)
  5. Version of Record updated: June 7, 2021 (version 3)

Copyright

© 2021, Delhaye et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 850
    Page views
  • 118
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Lloyd Davis et al.
    Tools and Resources Updated

    Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in Caenorhabditis elegans and use it to create a photoactivatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP-controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted.

    1. Neuroscience
    Mi-Seon Kong et al.
    Research Article

    Animals seeking survival needs must be able to assess different locations of threats in their habitat. However, the neural integration of spatial and risk information essential for guiding goal-directed behavior remains poorly understood. Thus, we investigated simultaneous activities of fear-responsive basal amygdala (BA) and place-responsive dorsal hippocampus (dHPC) neurons as rats left the safe nest to search for food in an exposed space and encountered a simulated 'predator'. In this realistic situation, BA cells increased their firing rates and dHPC place cells decreased their spatial stability near the threat. Importantly, only those dHPC cells synchronized with the predator-responsive BA cells remapped significantly as a function of escalating risk location. Moreover, optogenetic stimulation of BA neurons was sufficient to cause spatial avoidance behavior and disrupt place fields. These results suggest a dynamic interaction of BA's fear signalling cells and dHPC's spatial coding cells as animals traverse safe-danger areas of their environment.