Mitochondrial copper and phosphate transporter specificity was defined early in the evolution of eukaryotes

  1. Xinyu Zhu
  2. Aren Boulet
  3. Katherine M Buckley
  4. Casey B Phillips
  5. Micah G Gammon
  6. Laura E Oldfather
  7. Stanley A Moore
  8. Scot C Leary
  9. Paul A Cobine  Is a corresponding author
  1. Auburn University, United States
  2. University of Saskatchewan, Canada
  3. University Saskatchewan, Canada

Abstract

The mitochondrial carrier family protein SLC25A3 transports both copper and phosphate in mammals yet in Saccharomyces cerevisiae the transport of these substrates is partitioned across two paralogs: PIC2 and MIR1. To understand the ancestral state of copper and phosphate transport in mitochondria, we explored the evolutionary relationships of PIC2 and MIR1 orthologs across the eukaryotic tree of life. Phylogenetic analyses revealed that PIC2-like and MIR1-like orthologs are present in all major eukaryotic supergroups, indicating an ancient gene duplication created these paralogs. To link this phylogenetic signal to protein function, we used structural modelling and site-directed mutagenesis to identify residues involved in copper and phosphate transport. Based on these analyses, we generated a L175A variant of mouse SLC25A3 that retains the ability to transport copper but not phosphate. This work highlights the utility of using an evolutionary framework to uncover amino acids involved in substrate recognition by mitochondrial carrier family proteins.

Data availability

All data generated or analyzed during this study are included in the manuscript, supplemental file, and available on GenBank.

The following previously published data sets were used
    1. Alasdair C Ivens 1
    2. Christopher S Peacock
    3. Elizabeth A Worthey
    4. Lee Murphy
    5. Gautam Aggarwal
    6. Matthew Berriman
    7. Ellen Sisk
    8. Marie-Adele Rajandream
    9. Ellen Adlem
    10. Rita Aert
    11. Atashi Anupama
    12. Zina Apostolou
    13. Philip Attipoe
    14. Nathalie Bason
    15. Christopher Bauser
    16. Alfred Beck
    17. Stephen M Beverley
    18. Gabriella Bianchettin
    19. Katja Borzym
    20. Gordana Bothe
    21. Carlo V Bruschi
    22. Matt Collins
    23. Eithon Cadag
    24. Laura Ciarloni
    25. Christine Clayton
    26. Richard M R Coulson
    27. Ann Cronin
    28. Angela K Cruz
    29. Robert M Davies
    30. Javier De Gaudenzi
    31. Deborah E Dobson
    32. Andreas Duesterhoeft
    33. Gholam Fazelina
    34. Nigel Fosker
    35. Alberto Carlos Frasch
    36. Audrey Fraser
    37. Monika Fuchs
    38. Claudia Gabel
    39. Arlette Goble
    40. André Goffeau
    41. David Harris
    42. Christiane Hertz-Fowler
    43. Helmut Hilbert
    44. David Horn
    45. Yiting Huang
    46. Sven Klages
    47. Andrew Knights
    48. Michael Kube
    49. Natasha Larke
    50. Lyudmila Litvin
    51. Angela Lord
    52. Tin Louie
    53. Marco Marra
    54. David Masuy
    55. Keith Matthews
    56. Shulamit Michaeli
    57. Jeremy C Mottram
    58. Silke Müller-Auer
    59. Heather Munden
    60. Siri Nelson
    61. Halina Norbertczak
    62. Karen Oliver
    63. Susan O'neil
    64. Martin Pentony
    65. Thomas M Pohl
    66. Claire Price
    67. Bénédicte Purnelle
    68. Michael A Quail
    69. Ester Rabbinowitsch
    70. Richard Reinhardt
    71. Michael Rieger
    72. Joel Rinta
    73. Johan Robben
    74. Laura Robertson
    75. Jeronimo C Ruiz
    76. Simon Rutter
    77. David Saunders
    78. Melanie Schäfer
    79. Jacquie Schein
    80. David C Schwartz
    81. Kathy Seeger
    82. Amber Seyler
    83. Sarah Sharp
    84. Heesun Shin
    85. Dhileep Sivam
    86. Rob Squares
    87. Steve Squares
    88. Valentina Tosato
    89. Christy Vogt
    90. Guido Volckaert
    91. Rolf Wambutt
    92. Tim Warren
    93. Holger Wedler
    94. John Woodward
    95. Shiguo Zhou
    96. Wolfgang Zimmermann
    97. Deborah F Smith
    98. Jenefer M Blackwell
    99. Kenneth D Stuart
    100. Bart Barrell
    101. Peter J Myler
    (2011) ASM272v2
    GCA_000002725.2.

Article and author information

Author details

  1. Xinyu Zhu

    Biological Sciences, Auburn University, Auburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Aren Boulet

    Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Katherine M Buckley

    Biological Sciences, Auburn University, Auburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Casey B Phillips

    Biological Sciences, Auburn University, Auburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Micah G Gammon

    Biological Sciences, Auburn University, Auburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura E Oldfather

    Biological Sciences, Auburn University, Auburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stanley A Moore

    Biochemistry, Microbiology and Immunology, University Saskatchewan, Saskatoon, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Scot C Leary

    Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Paul A Cobine

    Biological Sciences, Auburn University, Auburn, United States
    For correspondence
    paul.cobine@auburn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6012-0985

Funding

National Institutes of Health (R01GM120211)

  • Scot C Leary
  • Paul A Cobine

National Science Foundation (EF 2021886)

  • Katherine M Buckley

Alabama Agricultural Experiment Station

  • Paul A Cobine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Zhu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,451
    views
  • 361
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xinyu Zhu
  2. Aren Boulet
  3. Katherine M Buckley
  4. Casey B Phillips
  5. Micah G Gammon
  6. Laura E Oldfather
  7. Stanley A Moore
  8. Scot C Leary
  9. Paul A Cobine
(2021)
Mitochondrial copper and phosphate transporter specificity was defined early in the evolution of eukaryotes
eLife 10:e64690.
https://doi.org/10.7554/eLife.64690

Share this article

https://doi.org/10.7554/eLife.64690

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.