The Development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates

  1. Gang Ye
  2. Joseph Gallant
  3. Jian Zheng
  4. Christopher Massey
  5. Ke Shi
  6. Wanbo Tai
  7. Abby Odle
  8. Molly Vickers
  9. Jian Shang
  10. Yushun Wan
  11. Lanying Du Dr.
  12. Hideki Aihara
  13. Stanley Perlman
  14. Aaron LeBeau  Is a corresponding author
  15. Fang Li  Is a corresponding author
  1. University of Minnesota, United States
  2. University of Iowa, United States
  3. University of Texas Medical Branch, United States
  4. Lindsley F Kimball Research Institute, United States
  5. Lindsley F Kimball Research Institute, New York Blood Center, United States

Abstract

Combating the COVID-19 pandemic requires potent and low-cost therapeutics. We identified a series of single-domain antibodies (i.e., nanobody), Nanosota-1, from a camelid nanobody phage display library. Structural data showed that Nanosota-1 bound to the oft-hidden receptor-binding domain (RBD) of SARS-CoV-2 spike protein, blocking viral receptor ACE2. The lead drug candidate possessing an Fc tag (Nanosota-1C-Fc) bound to SARS-CoV-2 RBD ~3000 times more tightly than ACE2 did and inhibited SARS-CoV-2 pseudovirus ~160 times more efficiently than ACE2 did. Administered at a single dose, Nanosota-1C-Fc demonstrated preventive and therapeutic efficacy against live SARS-CoV-2 infection in both hamster and mouse models. Unlike conventional antibodies, Nanosota-1C-Fc was produced at high yields in bacteria and had exceptional thermostability. Pharmacokinetic analysis of Nanosota-1C-Fc documented an excellent in vivo stability and a high tissue bioavailability. As effective and inexpensive drug candidates, Nanosota-1 may contribute to the battle against COVID-19.

Data availability

Coordinates and structure factors have been deposited to the Protein Data Bank with accession number 7KM5.

Article and author information

Author details

  1. Gang Ye

    Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, United States
    Competing interests
    Gang Ye, The University of Minnesota has filed a patent on Nanosota-1 drugs with F.L, G.Y., A.M.L., J.P.G., J.S., and Y.W. as inventors..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6034-2174
  2. Joseph Gallant

    Pharmacology, University of Minnesota, Minneapolis, United States
    Competing interests
    Joseph Gallant, The University of Minnesota has filed a patent on Nanosota-1 drugs with F.L, G.Y., A.M.L., J.P.G., J.S., and Y.W. as inventors..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4943-1744
  3. Jian Zheng

    Microbiology and Immunology, University of Iowa, Iowa City, United States
    Competing interests
    No competing interests declared.
  4. Christopher Massey

    Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston,, United States
    Competing interests
    No competing interests declared.
  5. Ke Shi

    Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States
    Competing interests
    No competing interests declared.
  6. Wanbo Tai

    New York Blood Center, Lindsley F Kimball Research Institute, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9864-8993
  7. Abby Odle

    Microbiology and Immunology, University of Iowa, Iowa City, United States
    Competing interests
    No competing interests declared.
  8. Molly Vickers

    Microbiology and Immunology, University of Iowa, Iowa City, United States
    Competing interests
    No competing interests declared.
  9. Jian Shang

    Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, United States
    Competing interests
    Jian Shang, The University of Minnesota has filed a patent on Nanosota-1 drugs with F.L, G.Y., A.M.L., J.P.G., J.S., and Y.W. as inventors..
  10. Yushun Wan

    Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, United States
    Competing interests
    Yushun Wan, The University of Minnesota has filed a patent on Nanosota-1 drugs with F.L, G.Y., A.M.L., J.P.G., J.S., and Y.W. as inventors..
  11. Lanying Du Dr.

    Viral Immunology Laboratory, Lindsley F Kimball Research Institute, New York Blood Center, New York, United States
    Competing interests
    No competing interests declared.
  12. Hideki Aihara

    Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7508-6230
  13. Stanley Perlman

    Microbiology and Immunology, University of Iowa, Iowa City, United States
    Competing interests
    No competing interests declared.
  14. Aaron LeBeau

    Pharmacology, University of Minnesota, Minneapolis, United States
    For correspondence
    alebeau@umn.edu
    Competing interests
    Aaron LeBeau, The University of Minnesota has filed a patent on Nanosota-1 drugs with F.L, G.Y., A.M.L., J.P.G., J.S., and Y.W. as inventors..
  15. Fang Li

    Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, United States
    For correspondence
    lifang@umn.edu
    Competing interests
    Fang Li, The University of Minnesota has filed a patent on Nanosota-1 drugs with F.L, G.Y., A.M.L., J.P.G., J.S., and Y.W. as inventors..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1958-366X

Funding

National Institutes of Health (R01AI157975)

  • Lanying Du Dr.
  • Stanley Perlman
  • Aaron LeBeau
  • Fang Li

National Institutes of Health (R01AI089728)

  • Fang Li

National Institutes of Health (R35GM118047)

  • Hideki Aihara

University of Minnesota

  • Fang Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the University of Texas Medical Branch (protocol number 2007072), of the New York Blood Center (protocol number 194.22), of the University of Iowa (protocol number 9051795), and of the University of Minnesota (protocol number 2009-38426A).

Copyright

© 2021, Ye et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,158
    views
  • 429
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gang Ye
  2. Joseph Gallant
  3. Jian Zheng
  4. Christopher Massey
  5. Ke Shi
  6. Wanbo Tai
  7. Abby Odle
  8. Molly Vickers
  9. Jian Shang
  10. Yushun Wan
  11. Lanying Du Dr.
  12. Hideki Aihara
  13. Stanley Perlman
  14. Aaron LeBeau
  15. Fang Li
(2021)
The Development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates
eLife 10:e64815.
https://doi.org/10.7554/eLife.64815

Share this article

https://doi.org/10.7554/eLife.64815

Further reading

    1. Microbiology and Infectious Disease
    Tao Tang, Weiming Zhong ... Zhipeng Gao
    Research Article

    Saprolegnia parasitica is one of the most virulent oomycete species in freshwater aquatic environments, causing severe saprolegniasis and leading to significant economic losses in the aquaculture industry. Thus far, the prevention and control of saprolegniasis face a shortage of medications. Linalool, a natural antibiotic alternative found in various essential oils, exhibits promising antimicrobial activity against a wide range of pathogens. In this study, the specific role of linalool in protecting S. parasitica infection at both in vitro and in vivo levels was investigated. Linalool showed multifaceted anti-oomycetes potential by both of antimicrobial efficacy and immunomodulatory efficacy. For in vitro test, linalool exhibited strong anti-oomycetes activity and mode of action included: (1) Linalool disrupted the cell membrane of the mycelium, causing the intracellular components leak out; (2) Linalool prohibited ribosome function, thereby inhibiting protein synthesis and ultimately affecting mycelium growth. Surprisingly, meanwhile we found the potential immune protective mechanism of linalool in the in vivo test: (1) Linalool enhanced the complement and coagulation system which in turn activated host immune defense and lysate S. parasitica cells; (2) Linalool promoted wound healing, tissue repair, and phagocytosis to cope with S. parasitica infection; (3) Linalool positively modulated the immune response by increasing the abundance of beneficial Actinobacteriota; (4) Linalool stimulated the production of inflammatory cytokines and chemokines to lyse S. parasitica cells. In all, our findings showed that linalool possessed multifaceted anti-oomycetes potential which would be a promising natural antibiotic alternative to cope with S. parasitica infection in the aquaculture industry.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Iti Mehta, Jacob B Hogins ... Larry Reitzer
    Research Article

    Polyamines are biologically ubiquitous cations that bind to nucleic acids, ribosomes, and phospholipids and, thereby, modulate numerous processes, including surface motility in Escherichia coli. We characterized the metabolic pathways that contribute to polyamine-dependent control of surface motility in the commonly used strain W3110 and the transcriptome of a mutant lacking a putrescine synthetic pathway that was required for surface motility. Genetic analysis showed that surface motility required type 1 pili, the simultaneous presence of two independent putrescine anabolic pathways, and modulation by putrescine transport and catabolism. An immunological assay for FimA—the major pili subunit, reverse transcription quantitative PCR of fimA, and transmission electron microscopy confirmed that pili synthesis required putrescine. Comparative RNAseq analysis of a wild type and ΔspeB mutant which exhibits impaired pili synthesis showed that the latter had fewer transcripts for pili structural genes and for fimB which codes for the phase variation recombinase that orients the fim operon promoter in the ON phase, although loss of speB did not affect the promoter orientation. Results from the RNAseq analysis also suggested (a) changes in transcripts for several transcription factor genes that affect fim operon expression, (b) compensatory mechanisms for low putrescine which implies a putrescine homeostatic network, and (c) decreased transcripts of genes for oxidative energy metabolism and iron transport which a previous genetic analysis suggests may be sufficient to account for the pili defect in putrescine synthesis mutants. We conclude that pili synthesis requires putrescine and putrescine concentration is controlled by a complex homeostatic network that includes the genes of oxidative energy metabolism.