Price equation captures the role of drug interactions and collateral effects in the evolution of multidrug resistance

  1. Erida Gjini  Is a corresponding author
  2. Kevin B Wood  Is a corresponding author
  1. University of Lisbon, Portugal
  2. University of Michigan, United States

Abstract

Bacterial adaptation to antibiotic combinations depends on the joint inhibitory effects of the two drugs (drug interaction, DI) and how resistance to one drug impacts resistance to the other (collateral effects, CE). Here we model these evolutionary dynamics on two-dimensional phenotype spaces that leverage scaling relations between the drug-response surfaces of drug sensitive (ancestral) and drug resistant (mutant) populations. We show that evolved resistance to the component drugs-and in turn, the adaptation of growth rate-is governed by a Price equation whose covariance terms encode geometric features of both the two-drug response surface (DI) in ancestral cells and the correlations between resistance levels to those drugs (CE). Within this framework, mean evolutionary trajectories reduce to a type of weighted gradient dynamics, with the drug interaction dictating the shape of the underlying landscape and the collateral effects constraining the motion on those landscapes. We also demonstrate how constraints on available mutational pathways can be incorporated into the framework, adding a third key driver of evolution. Our results clarify the complex relationship between drug interactions and collateral effects in multi-drug environments and illustrate how specific dosage combinations can shift the weighting of these two effects, leading to different and temporally-explicit selective outcomes.

Data availability

Data used in this paper was taken from a public repository:Dean, Ziah; Maltas, Jeff; Wood, Kevin (2020), Antibiotic interactions shape short-term evolution of resistance in Enterococcus faecalis, Dryad, Dataset, https://doi.org/10.5061/dryad.j3tx95x92There are no restrictions on any new results.

The following previously published data sets were used

Article and author information

Author details

  1. Erida Gjini

    Instituto Superior Tecnico, University of Lisbon, Lisbon, Portugal
    For correspondence
    erida.gjini@tecnico.ulisboa.pt
    Competing interests
    The authors declare that no competing interests exist.
  2. Kevin B Wood

    Department of Biophysics, University of Michigan, Ann Arbor, United States
    For correspondence
    kbwood@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0985-7401

Funding

National Institutes of Health (1R35GM124875)

  • Kevin B Wood

National Science Foundation (1553028)

  • Kevin B Wood

Fundação Luso-Americana para o Desenvolvimento (274/2016)

  • Erida Gjini

Instituto Gulbenkian de Ciencia

  • Erida Gjini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Gjini & Wood

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,305
    views
  • 286
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erida Gjini
  2. Kevin B Wood
(2021)
Price equation captures the role of drug interactions and collateral effects in the evolution of multidrug resistance
eLife 10:e64851.
https://doi.org/10.7554/eLife.64851

Share this article

https://doi.org/10.7554/eLife.64851

Further reading

    1. Evolutionary Biology
    Silas Tittes, Anne Lorant ... Jeffrey Ross-Ibarra
    Research Article

    What is the genetic architecture of local adaptation and what is the geographic scale over which it operates? We investigated patterns of local and convergent adaptation in five sympatric population pairs of traditionally cultivated maize and its wild relative teosinte (Zea mays subsp. parviglumis). We found that signatures of local adaptation based on the inference of adaptive fixations and selective sweeps are frequently exclusive to individual populations, more so in teosinte compared to maize. However, for both maize and teosinte, selective sweeps are also frequently shared by several populations, and often between subspecies. We were further able to infer that selective sweeps were shared among populations most often via migration, though sharing via standing variation was also common. Our analyses suggest that teosinte has been a continued source of beneficial alleles for maize, even after domestication, and that maize populations have facilitated adaptation in teosinte by moving beneficial alleles across the landscape. Taken together, our results suggest local adaptation in maize and teosinte has an intermediate geographic scale, one that is larger than individual populations but smaller than the species range.

    1. Evolutionary Biology
    2. Neuroscience
    Gregor Belušič
    Insight

    The first complete 3D reconstruction of the compound eye of a minute wasp species sheds light on the nuts and bolts of size reduction.