Price equation captures the role of drug interactions and collateral effects in the evolution of multidrug resistance
Abstract
Bacterial adaptation to antibiotic combinations depends on the joint inhibitory effects of the two drugs (drug interaction, DI) and how resistance to one drug impacts resistance to the other (collateral effects, CE). Here we model these evolutionary dynamics on two-dimensional phenotype spaces that leverage scaling relations between the drug-response surfaces of drug sensitive (ancestral) and drug resistant (mutant) populations. We show that evolved resistance to the component drugs-and in turn, the adaptation of growth rate-is governed by a Price equation whose covariance terms encode geometric features of both the two-drug response surface (DI) in ancestral cells and the correlations between resistance levels to those drugs (CE). Within this framework, mean evolutionary trajectories reduce to a type of weighted gradient dynamics, with the drug interaction dictating the shape of the underlying landscape and the collateral effects constraining the motion on those landscapes. We also demonstrate how constraints on available mutational pathways can be incorporated into the framework, adding a third key driver of evolution. Our results clarify the complex relationship between drug interactions and collateral effects in multi-drug environments and illustrate how specific dosage combinations can shift the weighting of these two effects, leading to different and temporally-explicit selective outcomes.
Data availability
Data used in this paper was taken from a public repository:Dean, Ziah; Maltas, Jeff; Wood, Kevin (2020), Antibiotic interactions shape short-term evolution of resistance in Enterococcus faecalis, Dryad, Dataset, https://doi.org/10.5061/dryad.j3tx95x92There are no restrictions on any new results.
-
Data from: Antibiotic interactions shape short-term evolution of resistance in Enterococcus faecalisDryad Digital Repository, doi:10.5061/dryad.j3tx95x92.
Article and author information
Author details
Funding
National Institutes of Health (1R35GM124875)
- Kevin B Wood
National Science Foundation (1553028)
- Kevin B Wood
Fundação Luso-Americana para o Desenvolvimento (274/2016)
- Erida Gjini
Instituto Gulbenkian de Ciencia
- Erida Gjini
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- C. Brandon Ogbunugafor, Yale University, United States
Version history
- Received: November 13, 2020
- Accepted: July 8, 2021
- Accepted Manuscript published: July 22, 2021 (version 1)
- Accepted Manuscript updated: July 26, 2021 (version 2)
- Version of Record published: August 3, 2021 (version 3)
Copyright
© 2021, Gjini & Wood
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,958
- Page views
-
- 240
- Downloads
-
- 7
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Evolutionary Biology
Cephalochordates and tunicates represent the only two groups of invertebrate chordates, and extant cephalochordates – commonly known as amphioxus or lancelets – are considered the best proxy for the chordate ancestor, from which they split around 520 million years ago. Amphioxus has been an important organism in the fields of zoology and embryology since the 18th century, and the morphological and genomic simplicity of cephalochordates (compared to vertebrates) makes amphioxus an attractive model for studying chordate biology at the cellular and molecular levels. Here we describe the life cycle of amphioxus, and discuss the natural histories and habitats of the different species of amphioxus. We also describe their use as laboratory animal models, and discuss the techniques that have been developed to study different aspects of amphioxus.
-
- Evolutionary Biology
- Neuroscience
Because brain tissues rarely fossilize, pinpointing when and how modern human cerebral traits emerged in the hominin lineage is particularly challenging. The fragmentary nature of the fossil material, coupled with the difficulty of characterizing such a complex organ, has been the source of long-standing debates. Prominent among them are the uncertainties around the derived or primitive state of the brain organization in the earliest representatives of the genus Homo, more particularly in key regions such as the Broca’s area. By revisiting a particularly well-preserved fossil endocast from the Turkana basin (Kenya), here we confirm that early Homo in Africa had a primitive organization of the Broca’s area ca. 1.9 million years ago. Additionally, our description of KNM-ER 3732 adds further information about the variation pattern of the inferior frontal gyrus in fossil hominins, with implications for early Homo taxic diversity (i.e. one or two Homo species at Koobi Fora) and the nature of the mechanisms involved in the emergence of derived cerebral traits.