1. Evolutionary Biology
  2. Physics of Living Systems
Download icon

Price equation captures the role of drug interactions and collateral effects in the evolution of multidrug resistance

  1. Erida Gjini  Is a corresponding author
  2. Kevin B Wood  Is a corresponding author
  1. University of Lisbon, Portugal
  2. University of Michigan, United States
Research Article
  • Cited 0
  • Views 213
  • Annotations
Cite this article as: eLife 2021;10:e64851 doi: 10.7554/eLife.64851

Abstract

Bacterial adaptation to antibiotic combinations depends on the joint inhibitory effects of the two drugs (drug interaction, DI) and how resistance to one drug impacts resistance to the other (collateral effects, CE). Here we model these evolutionary dynamics on two-dimensional phenotype spaces that leverage scaling relations between the drug-response surfaces of drug sensitive (ancestral) and drug resistant (mutant) populations. We show that evolved resistance to the component drugs-and in turn, the adaptation of growth rate-is governed by a Price equation whose covariance terms encode geometric features of both the two-drug response surface (DI) in ancestral cells and the correlations between resistance levels to those drugs (CE). Within this framework, mean evolutionary trajectories reduce to a type of weighted gradient dynamics, with the drug interaction dictating the shape of the underlying landscape and the collateral effects constraining the motion on those landscapes. We also demonstrate how constraints on available mutational pathways can be incorporated into the framework, adding a third key driver of evolution. Our results clarify the complex relationship between drug interactions and collateral effects in multi-drug environments and illustrate how specific dosage combinations can shift the weighting of these two effects, leading to different and temporally-explicit selective outcomes.

Data availability

Data used in this paper was taken from a public repository:Dean, Ziah; Maltas, Jeff; Wood, Kevin (2020), Antibiotic interactions shape short-term evolution of resistance in Enterococcus faecalis, Dryad, Dataset, https://doi.org/10.5061/dryad.j3tx95x92There are no restrictions on any new results.

The following previously published data sets were used

Article and author information

Author details

  1. Erida Gjini

    Instituto Superior Tecnico, University of Lisbon, Lisbon, Portugal
    For correspondence
    erida.gjini@tecnico.ulisboa.pt
    Competing interests
    The authors declare that no competing interests exist.
  2. Kevin B Wood

    Department of Biophysics, University of Michigan, Ann Arbor, United States
    For correspondence
    kbwood@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0985-7401

Funding

National Institutes of Health (1R35GM124875)

  • Kevin B Wood

National Science Foundation (1553028)

  • Kevin B Wood

Fundação Luso-Americana para o Desenvolvimento (274/2016)

  • Erida Gjini

Instituto Gulbenkian de Ciencia

  • Erida Gjini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. C. Brandon Ogbunugafor, Yale University, United States

Publication history

  1. Received: November 13, 2020
  2. Accepted: July 8, 2021
  3. Accepted Manuscript published: July 22, 2021 (version 1)
  4. Accepted Manuscript updated: July 26, 2021 (version 2)

Copyright

© 2021, Gjini & Wood

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 213
    Page views
  • 26
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Ecology
    2. Evolutionary Biology
    Hanna M Bensch et al.
    Research Article

    Living with relatives can be highly beneficial, enhancing reproduction and survival. High relatedness can, however, increase susceptibility to pathogens. Here, we examine whether the benefits of living with relatives offset the harm caused by pathogens, and if this depends on whether species typically live with kin. Using comparative meta-analysis of plants, animals, and a bacterium (nspecies = 56), we show that high within-group relatedness increases mortality when pathogens are present. In contrast, mortality decreased with relatedness when pathogens were rare, particularly in species that live with kin. Furthermore, across groups variation in mortality was lower when relatedness was high, but abundances of pathogens were more variable. The effects of within-group relatedness were only evident when pathogens were experimentally manipulated, suggesting that the harm caused by pathogens is masked by the benefits of living with relatives in nature. These results highlight the importance of kin selection for understanding disease spread in natural populations.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    George H Perry
    Editorial

    In recognition that evolutionary theory is critical for understanding modern human health, eLife is publishing a special issue on evolutionary medicine to showcase recent research in this growing and increasingly interdisciplinary field.