Unique integrated stress response sensors regulate cancer cell susceptibility when Hsp70 activity is compromised

  1. Sara Sannino  Is a corresponding author
  2. Megan E Yates
  3. Mark E Schurdak
  4. Steffi Oesterreich
  5. Adrian V Lee
  6. Peter Wipf
  7. Jeffrey L Brodsky  Is a corresponding author
  1. University of Pittsburgh, United States
  2. Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, United States
  3. Institute for Precision Medicine, United States

Abstract

AMPK, AMP-activated protein Kinase; AKT, AK strain Transforming serine/threonine kinase; ASNS, asparagine synthetase; ATF4, activating transcription factor 4; ATF6, activating transcription factor 6; BiP, Immunoglobulin Binding Protein; CHOP, C/EBP homologous protein; CQ, chloroquine; DTT, 1,4-Dithiothreitol; EBSS, Earle's balanced salt solution; eIF2α, eukaryotic initiation factor 2 alpha; ER, endoplasmic reticulum; ERAD, endoplasmic reticulum associated degradation; FBS, fetal bovine serum; GCN2, general control non-derepressible 2 factor; GFP, green fluorescent protein; HER2, epidermal growth factor receptor 2; HIF1α, Hypoxia Inducible Factor 1 Subunit Alpha; HRI, heme-regulated inhibitor kinase; Hsp70, heat shock protein 70; IRE1, inositol-required enzyme 1; ISR, integrated stress response; MAL3-101, phenylmethyl 4-[1,1'-biphenyl]-4-yl-1-[6-[[2-(butylamino)-1-[3-(methoxycarbonyl)-4-(2-methoxy-2-oxoethoxy)phenyl]-2-oxoethyl]hexylamino]-6-oxohexyl]-1,2,3,4-tetrahydro-6-methyl-2-oxo-5-pyrimidinecarboxylate; mTOR, mechanistic Target Of Rapamycin; PBS, phosphate buffered saline; PERK, PKR-like endoplasmic reticulum resident kinase; PI, propidium iodide; PKR, Protein Kinase RNA-activated; RFP, red fluorescent protein; RPPA, Reverse Phase Protein Array; S6K, 70‐kDa ribosomal protein S6 kinase; TNBC, triple negative breast cancer; UPR, unfolded protein response; XbpI, X-box binding protein 1.

Data availability

All data generated or analysed during this study are included in the manuscript and source files.

Article and author information

Author details

  1. Sara Sannino

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    sannino.sara1986@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Megan E Yates

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark E Schurdak

    Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Steffi Oesterreich

    Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Adrian V Lee

    Institute for Precision Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter Wipf

    Department of Chemistry, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jeffrey L Brodsky

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    jbrodsky@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6984-8486

Funding

European Molecular Biology Laboratory (post-doctoral fellowship (ALTF 823-2016))

  • Sara Sannino

National Institutes of Health (F30CA250167)

  • Megan E Yates

National Institutes of Health (GM131732)

  • Jeffrey L Brodsky

National Institutes of Health (DK79307)

  • Jeffrey L Brodsky

National Institutes of Health (P30CA047904)

  • Jeffrey L Brodsky

Howard Hughes Medical Institute (Howard Hughes Medical Institute Collaborative Innovation award)

  • Jeffrey L Brodsky

University of Pittsburgh (Translational and Precision Pharmacology programs (pilot grant))

  • Jeffrey L Brodsky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Franz-Ulrich Hartl, Max Planck Institute for Biochemistry, Germany

Version history

  1. Received: November 18, 2020
  2. Accepted: June 27, 2021
  3. Accepted Manuscript published: June 28, 2021 (version 1)
  4. Accepted Manuscript updated: June 29, 2021 (version 2)
  5. Version of Record published: July 12, 2021 (version 3)

Copyright

© 2021, Sannino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,425
    views
  • 384
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara Sannino
  2. Megan E Yates
  3. Mark E Schurdak
  4. Steffi Oesterreich
  5. Adrian V Lee
  6. Peter Wipf
  7. Jeffrey L Brodsky
(2021)
Unique integrated stress response sensors regulate cancer cell susceptibility when Hsp70 activity is compromised
eLife 10:e64977.
https://doi.org/10.7554/eLife.64977

Share this article

https://doi.org/10.7554/eLife.64977

Further reading

    1. Cell Biology
    Yi-Ju Chen, Shun-Cheng Tseng ... Eric Hwang
    Research Article

    A functional nervous system is built upon the proper morphogenesis of neurons to establish the intricate connection between them. The microtubule cytoskeleton is known to play various essential roles in this morphogenetic process. While many microtubule-associated proteins (MAPs) have been demonstrated to participate in neuronal morphogenesis, the function of many more remains to be determined. This study focuses on a MAP called HMMR in mice, which was originally identified as a hyaluronan binding protein and later found to possess microtubule and centrosome binding capacity. HMMR exhibits high abundance on neuronal microtubules and altering the level of HMMR significantly affects the morphology of neurons. Instead of confining to the centrosome(s) like cells in mitosis, HMMR localizes to microtubules along axons and dendrites. Furthermore, transiently expressing HMMR enhances the stability of neuronal microtubules and increases the formation frequency of growing microtubules along the neurites. HMMR regulates the microtubule localization of a non-centrosomal microtubule nucleator TPX2 along the neurite, offering an explanation for how HMMR contributes to the promotion of growing microtubules. This study sheds light on how cells utilize proteins involved in mitosis for non-mitotic functions.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Jiabin Pan, Rui Zhou ... Xiang-dong Li
    Research Article

    Transport and localization of melanosome at the periphery region of melanocyte are depended on myosin-5a (Myo5a), which associates with melanosome by interacting with its adaptor protein melanophilin (Mlph). Mlph contains four functional regions, including Rab27a-binding domain, Myo5a GTD-binding motif (GTBM), Myo5a exon F-binding domain (EFBD), and actin-binding domain (ABD). The association of Myo5a with Mlph is known to be mediated by two specific interactions: the interaction between the exon-F-encoded region of Myo5a and Mlph-EFBD and that between Myo5a-GTD and Mlph-GTBM. Here, we identify a third interaction between Myo5a and Mlph, that is, the interaction between the exon-G-encoded region of Myo5a and Mlph-ABD. The exon-G/ABD interaction is independent from the exon-F/EFBD interaction and is required for the association of Myo5a with melanosome. Moreover, we demonstrate that Mlph-ABD interacts with either the exon-G or actin filament, but cannot interact with both of them simultaneously. Based on above findings, we propose a new model for the Mlph-mediated Myo5a transportation of melanosomes.