Unique integrated stress response sensors regulate cancer cell susceptibility when Hsp70 activity is compromised

  1. Sara Sannino  Is a corresponding author
  2. Megan E Yates
  3. Mark E Schurdak
  4. Steffi Oesterreich
  5. Adrian V Lee
  6. Peter Wipf
  7. Jeffrey L Brodsky  Is a corresponding author
  1. University of Pittsburgh, United States
  2. Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, United States
  3. Institute for Precision Medicine, United States

Abstract

AMPK, AMP-activated protein Kinase; AKT, AK strain Transforming serine/threonine kinase; ASNS, asparagine synthetase; ATF4, activating transcription factor 4; ATF6, activating transcription factor 6; BiP, Immunoglobulin Binding Protein; CHOP, C/EBP homologous protein; CQ, chloroquine; DTT, 1,4-Dithiothreitol; EBSS, Earle's balanced salt solution; eIF2α, eukaryotic initiation factor 2 alpha; ER, endoplasmic reticulum; ERAD, endoplasmic reticulum associated degradation; FBS, fetal bovine serum; GCN2, general control non-derepressible 2 factor; GFP, green fluorescent protein; HER2, epidermal growth factor receptor 2; HIF1α, Hypoxia Inducible Factor 1 Subunit Alpha; HRI, heme-regulated inhibitor kinase; Hsp70, heat shock protein 70; IRE1, inositol-required enzyme 1; ISR, integrated stress response; MAL3-101, phenylmethyl 4-[1,1'-biphenyl]-4-yl-1-[6-[[2-(butylamino)-1-[3-(methoxycarbonyl)-4-(2-methoxy-2-oxoethoxy)phenyl]-2-oxoethyl]hexylamino]-6-oxohexyl]-1,2,3,4-tetrahydro-6-methyl-2-oxo-5-pyrimidinecarboxylate; mTOR, mechanistic Target Of Rapamycin; PBS, phosphate buffered saline; PERK, PKR-like endoplasmic reticulum resident kinase; PI, propidium iodide; PKR, Protein Kinase RNA-activated; RFP, red fluorescent protein; RPPA, Reverse Phase Protein Array; S6K, 70‐kDa ribosomal protein S6 kinase; TNBC, triple negative breast cancer; UPR, unfolded protein response; XbpI, X-box binding protein 1.

Data availability

All data generated or analysed during this study are included in the manuscript and source files.

Article and author information

Author details

  1. Sara Sannino

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    sannino.sara1986@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Megan E Yates

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark E Schurdak

    Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Steffi Oesterreich

    Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Adrian V Lee

    Institute for Precision Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter Wipf

    Department of Chemistry, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jeffrey L Brodsky

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    jbrodsky@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6984-8486

Funding

European Molecular Biology Laboratory (post-doctoral fellowship (ALTF 823-2016))

  • Sara Sannino

National Institutes of Health (F30CA250167)

  • Megan E Yates

National Institutes of Health (GM131732)

  • Jeffrey L Brodsky

National Institutes of Health (DK79307)

  • Jeffrey L Brodsky

National Institutes of Health (P30CA047904)

  • Jeffrey L Brodsky

Howard Hughes Medical Institute (Howard Hughes Medical Institute Collaborative Innovation award)

  • Jeffrey L Brodsky

University of Pittsburgh (Translational and Precision Pharmacology programs (pilot grant))

  • Jeffrey L Brodsky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Sannino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,641
    views
  • 402
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara Sannino
  2. Megan E Yates
  3. Mark E Schurdak
  4. Steffi Oesterreich
  5. Adrian V Lee
  6. Peter Wipf
  7. Jeffrey L Brodsky
(2021)
Unique integrated stress response sensors regulate cancer cell susceptibility when Hsp70 activity is compromised
eLife 10:e64977.
https://doi.org/10.7554/eLife.64977

Share this article

https://doi.org/10.7554/eLife.64977