Unique integrated stress response sensors regulate cancer cell susceptibility when Hsp70 activity is compromised
Abstract
AMPK, AMP-activated protein Kinase; AKT, AK strain Transforming serine/threonine kinase; ASNS, asparagine synthetase; ATF4, activating transcription factor 4; ATF6, activating transcription factor 6; BiP, Immunoglobulin Binding Protein; CHOP, C/EBP homologous protein; CQ, chloroquine; DTT, 1,4-Dithiothreitol; EBSS, Earle's balanced salt solution; eIF2α, eukaryotic initiation factor 2 alpha; ER, endoplasmic reticulum; ERAD, endoplasmic reticulum associated degradation; FBS, fetal bovine serum; GCN2, general control non-derepressible 2 factor; GFP, green fluorescent protein; HER2, epidermal growth factor receptor 2; HIF1α, Hypoxia Inducible Factor 1 Subunit Alpha; HRI, heme-regulated inhibitor kinase; Hsp70, heat shock protein 70; IRE1, inositol-required enzyme 1; ISR, integrated stress response; MAL3-101, phenylmethyl 4-[1,1'-biphenyl]-4-yl-1-[6-[[2-(butylamino)-1-[3-(methoxycarbonyl)-4-(2-methoxy-2-oxoethoxy)phenyl]-2-oxoethyl]hexylamino]-6-oxohexyl]-1,2,3,4-tetrahydro-6-methyl-2-oxo-5-pyrimidinecarboxylate; mTOR, mechanistic Target Of Rapamycin; PBS, phosphate buffered saline; PERK, PKR-like endoplasmic reticulum resident kinase; PI, propidium iodide; PKR, Protein Kinase RNA-activated; RFP, red fluorescent protein; RPPA, Reverse Phase Protein Array; S6K, 70‐kDa ribosomal protein S6 kinase; TNBC, triple negative breast cancer; UPR, unfolded protein response; XbpI, X-box binding protein 1.
Data availability
All data generated or analysed during this study are included in the manuscript and source files.
Article and author information
Author details
Funding
European Molecular Biology Laboratory (post-doctoral fellowship (ALTF 823-2016))
- Sara Sannino
National Institutes of Health (F30CA250167)
- Megan E Yates
National Institutes of Health (GM131732)
- Jeffrey L Brodsky
National Institutes of Health (DK79307)
- Jeffrey L Brodsky
National Institutes of Health (P30CA047904)
- Jeffrey L Brodsky
Howard Hughes Medical Institute (Howard Hughes Medical Institute Collaborative Innovation award)
- Jeffrey L Brodsky
University of Pittsburgh (Translational and Precision Pharmacology programs (pilot grant))
- Jeffrey L Brodsky
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Sannino et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,577
- views
-
- 397
- downloads
-
- 17
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Endosomes have emerged as major signaling hubs where different internalized ligand–receptor complexes are integrated and the outcome of signaling pathways are organized to regulate the strength and specificity of signal transduction events. Ezrin, a major membrane–actin linker that assembles and coordinates macromolecular signaling complexes at membranes, has emerged recently as an important regulator of lysosomal function. Here, we report that endosomal-localized EGFR/Ezrin complex interacts with and triggers the inhibition of the Tuberous Sclerosis Complex (TSC complex) in response to EGF stimuli. This is regulated through activation of the AKT signaling pathway. Loss of Ezrin was not sufficient to repress TSC complex by EGF and culminated in translocation of TSC complex to lysosomes triggering suppression of mTORC1 signaling. Overexpression of constitutively active EZRINT567D is sufficient to relocalize TSC complex to the endosomes and reactivate mTORC1. Our findings identify EZRIN as a critical regulator of autophagy via TSC complex in response to EGF stimuli and establish the central role of early endosomal signaling in the regulation of mTORC1. Consistently, Medaka fish deficient for Ezrin exhibit defective endo-lysosomal pathway, attributable to the compromised EGFR/AKT signaling, ultimately leading to retinal degeneration. Our data identify a pivotal mechanism of endo-lysosomal signaling involving Ezrin and its associated EGFR/TSC complex, which are essential for retinal function.
-
- Cell Biology
Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) – comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI – is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that pharmacologic activation of the ISR reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions, including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.