Unique integrated stress response sensors regulate cancer cell susceptibility when Hsp70 activity is compromised

  1. Sara Sannino  Is a corresponding author
  2. Megan E Yates
  3. Mark E Schurdak
  4. Steffi Oesterreich
  5. Adrian V Lee
  6. Peter Wipf
  7. Jeffrey L Brodsky  Is a corresponding author
  1. University of Pittsburgh, United States
  2. Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, United States
  3. Institute for Precision Medicine, United States

Abstract

AMPK, AMP-activated protein Kinase; AKT, AK strain Transforming serine/threonine kinase; ASNS, asparagine synthetase; ATF4, activating transcription factor 4; ATF6, activating transcription factor 6; BiP, Immunoglobulin Binding Protein; CHOP, C/EBP homologous protein; CQ, chloroquine; DTT, 1,4-Dithiothreitol; EBSS, Earle's balanced salt solution; eIF2α, eukaryotic initiation factor 2 alpha; ER, endoplasmic reticulum; ERAD, endoplasmic reticulum associated degradation; FBS, fetal bovine serum; GCN2, general control non-derepressible 2 factor; GFP, green fluorescent protein; HER2, epidermal growth factor receptor 2; HIF1α, Hypoxia Inducible Factor 1 Subunit Alpha; HRI, heme-regulated inhibitor kinase; Hsp70, heat shock protein 70; IRE1, inositol-required enzyme 1; ISR, integrated stress response; MAL3-101, phenylmethyl 4-[1,1'-biphenyl]-4-yl-1-[6-[[2-(butylamino)-1-[3-(methoxycarbonyl)-4-(2-methoxy-2-oxoethoxy)phenyl]-2-oxoethyl]hexylamino]-6-oxohexyl]-1,2,3,4-tetrahydro-6-methyl-2-oxo-5-pyrimidinecarboxylate; mTOR, mechanistic Target Of Rapamycin; PBS, phosphate buffered saline; PERK, PKR-like endoplasmic reticulum resident kinase; PI, propidium iodide; PKR, Protein Kinase RNA-activated; RFP, red fluorescent protein; RPPA, Reverse Phase Protein Array; S6K, 70‐kDa ribosomal protein S6 kinase; TNBC, triple negative breast cancer; UPR, unfolded protein response; XbpI, X-box binding protein 1.

Data availability

All data generated or analysed during this study are included in the manuscript and source files.

Article and author information

Author details

  1. Sara Sannino

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    sannino.sara1986@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Megan E Yates

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark E Schurdak

    Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Steffi Oesterreich

    Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Adrian V Lee

    Institute for Precision Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter Wipf

    Department of Chemistry, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jeffrey L Brodsky

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    jbrodsky@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6984-8486

Funding

European Molecular Biology Laboratory (post-doctoral fellowship (ALTF 823-2016))

  • Sara Sannino

National Institutes of Health (F30CA250167)

  • Megan E Yates

National Institutes of Health (GM131732)

  • Jeffrey L Brodsky

National Institutes of Health (DK79307)

  • Jeffrey L Brodsky

National Institutes of Health (P30CA047904)

  • Jeffrey L Brodsky

Howard Hughes Medical Institute (Howard Hughes Medical Institute Collaborative Innovation award)

  • Jeffrey L Brodsky

University of Pittsburgh (Translational and Precision Pharmacology programs (pilot grant))

  • Jeffrey L Brodsky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Sannino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,549
    views
  • 395
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara Sannino
  2. Megan E Yates
  3. Mark E Schurdak
  4. Steffi Oesterreich
  5. Adrian V Lee
  6. Peter Wipf
  7. Jeffrey L Brodsky
(2021)
Unique integrated stress response sensors regulate cancer cell susceptibility when Hsp70 activity is compromised
eLife 10:e64977.
https://doi.org/10.7554/eLife.64977

Share this article

https://doi.org/10.7554/eLife.64977

Further reading

    1. Cell Biology
    Zewei Zhao, Longyun Hu ... Zhonghan Yang
    Research Article

    The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application. The objective of this study was to identify a GPCR that is highly expressed in human adipocytes and to explore its potential involvement in adipose thermogenesis. Our research findings have demonstrated that the adhesion G-protein-coupled receptor A3 (ADGRA3), an orphan GPCR, plays a significant role in adipose thermogenesis through its constitutively active effects. ADGRA3 exhibited high expression levels in human adipocytes and mouse brown fat. Furthermore, the knockdown of Adgra3 resulted in an exacerbated obese phenotype and a reduction in the expression of thermogenic markers in mice. Conversely, Adgra3 overexpression activated the adipose thermogenic program and improved metabolic homeostasis in mice without exogenous ligand. We found that ADGRA3 facilitates the biogenesis of beige human or mouse adipocytes in vitro. Moreover, hesperetin was identified as a potential agonist of ADGRA3, capable of inducing adipocyte browning and ameliorating insulin resistance in mice. In conclusion, our study demonstrated that the overexpression of constitutively active ADGRA3 or the activation of ADGRA3 by hesperetin can induce adipocyte browning by Gs-PKA-CREB axis. These findings indicate that the utilization of hesperetin and the selective overexpression of ADGRA3 in adipose tissue could serve as promising therapeutic strategies in the fight against obesity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.