Structure of HIV-1 gp41 with its membrane anchors targeted by neutralizing antibodies

  1. Christophe Caillat
  2. Delphine Guilligay
  3. Johana Torralba
  4. Nikolas Friedrich
  5. Jose L Nieva
  6. Alexandra Trkola
  7. Christophe J Chipot
  8. François L Dehez
  9. Winfried Weissenhorn  Is a corresponding author
  1. Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), France
  2. Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Spain
  3. Institute of Medical Virology, University of Zurich, Switzerland
  4. Laboratoire de Physique et Chimie Théoriques (LPCT), University of Lorraine, France
  5. Laboratoire International Associé, CNRS and University of Illinois at Urbana-Champaign, France
  6. Department of Physics, University of Illinois at Urbana-Champaign, United States
8 figures, 3 tables and 1 additional file

Figures

Figure 1 with 7 supplements
Crystal structure of gp41FP-TM in complex with 2H10.

(A) Schematic drawing of gp41 and expression constructs of gp41 chains N and C. Sequence numbering is based on the HIV-1-HBX2 envelope gp160 sequence. Color coding is as follows: FP, fusion peptide, …

Figure 1—figure supplement 1
Characterization of gp41 containing FP and TM.

(A) Size exclusion chromatography of the gp41FP-TM complex composed of chains N and C and SDS-PAGE showing the two bands corresponding to gp41 chains N and C. (B) SEC of gp41FP-TM in complex with …

Figure 1—figure supplement 2
Biophysical characterization of gp41FP-TM and MPER Ab interaction.

(A) Circular dichroism of gp41FP-TM shows that FP and TM increase the melting temperature of gp41. Temperature-dependent unfolding of gp41FP-TM monitored by circular dichroism spectroscopy recorded …

Figure 1—figure supplement 3
Close-ups of the model and its corresponding electron density.

2Fo-Fc composite omit maps contoured at 1 σ of a central 6HB core region (A and B) of the kinked MPER conformation of protomer C.

Figure 1—figure supplement 4
Comparison of the gp41FP-TM structure with gp41 core structures.

Ribbon presentation of gp41-MPER (pdb 3k9a), gp41FPPR-MPER (pdb 2x7r) and gp41FP-TM (numbering is shown for chain B). Cα super positioning of all three structures onto chains N-B (residues 546–574) …

Figure 1—figure supplement 5
Positioning of gp41FP-TM-2H10 in a bilayer by MD simulation.

(A) Model of gp41FP-TM-2H10 before simulation and (B) after 1 µs simulation, which repositions the 2H10 CDR3 in the membrane and reveals movement of FP of chain C. The orange spheres represent the …

Figure 1—figure supplement 6
Crystal lattice packing.

Crystal packing of protein 2-D layers arranged in the c direction of the crystal unit cell do not show defined crystal contacts. The inset shows the distances between the protein layers indicating …

Figure 1—figure supplement 7
Membrane interaction of 2H10.

Membrane interaction of nanobodies 2H10, 2H10-RKRF, and bnAb 10E8 was tested using liposomes containing the lipid composition of the HIV-1 envelope. Nanobodies 2H10 and 2H10-RKRF as well as bnAb10E8 …

Figure 2 with 1 supplement
Vesicle-vesicle fusion inhibition by 2H10-RKRF, bi-2H10, 2F5, and 10E8.

(A) Time course of the lipid-mixing assay using fusion-committed vesicles. At time 30 s (‘+N-MPER’), peptide (4 µM) was added to a stirring solution of unlabeled vesicles (90 µM lipid), and, after …

Figure 2—figure supplement 1
Vesicle-vesicle fusion inhibition by 10E8 Fabs.

(A) Time course of the lipid-mixing assay using fusion-committed vesicles. At time 30 s (‘+C-MPER’), peptide (4 µM) was added to a stirring solution of unlabeled vesicles (90 µM lipid), and, after …

Figure 3 with 1 supplement
Gp41FP-TM interaction with bnAbs LN01 and 10E8.

(A) Cα superposition of the MPER peptide structure in complex with LN01 (pdb 6snd) onto chain C-C of the gp41FP-TM-2H10 structure. The lower panel shows a close-up of the interaction oriented with …

Figure 3—figure supplement 1
Pull down of gp41FP-TM by bnAb 10E8 and LN01.

Immunoprecipitation of gp41FP-TM by bNAbs 10E8 and LN01. Input and eluted fractions were analyzed on SDS-gel and stained with Coomassie brilliant blue. Input fractions correspond to gp41FP-TM alone …

Figure 4 with 2 supplements
Interactions within the final post fusion conformation of gp41FP-TM modeled by MD.

(A) Model of gp41FP-TM (Figure 1—figure supplement 7C) after 1µs MD simulation in a bilayer. Phosphate groups of the phospholipids are shown as orange spheres to delineate the membrane boundaries. (B

Figure 4—figure supplement 1
Modeling a post fusion conformation by MD simulation.

(A) Ribbon of the crystal structure of gp41FP-TM. Numbering of chain B is as shown in Figure 1F. (B) Ribbon of the symmetric trimer model built from chains N-B and C-B of the gp41FP-TM structure. …

Figure 4—figure supplement 2
Positions of the conserved tryptophan residues of MPER in the post fusion model.

Tryptophan residues W666, W670, W672, W678, and W680 and their close-by potential contacts are shown as spheres.

Conformational transitions of gp41 that lead to membrane apposition and membrane fusion.

(A) Representation of the different domains of gp41 with the residue numbers delimiting each domain as indicated. The same color code has been used in all the figures. (B) Ribbon presentation of the …

Author response image 1
MALDI-TOF analysis of gp41FP-TM.

The raw spectrum shows the single and doubly charged ion of chains N and C.

Author response image 2
Neutralization potency of 10E8 Fab variants (cell entry inhibition measured against HIV-1 virions pseudotyped with JR-CSF Env) and their ability to block C-MPER-induced lipid-mixing.

The top diagram (Figure 2—figure supplement 1B) shows the mutated residues and their positions with respect to the putative membrane binding.

Author response image 3
Gp41(512-711) used in this experiment, composed of residues 512-581 and 628-711 (including FP-FPPR and MPER-TM), reveals a Tm of 90°C (green curve, buffer DDM) and gp41(528-683) (including FPPR and MPER) has a Tm of 88°C (black curve, no detergent).

Please note that gp41FP-TM used in the current study is composed of residues 512-594 with a 13 aa longer N-terminal coiled coil and a 5 residue C-terminal extension to residue 716. The two curves …

Tables

Table 1
Crystallographic data collection and refinement statistics.
Data collectionGp41FP-TM*
Space groupC 2 2 21
Cell dimensions
a, b, c (Å)96.75, 101.41, 234.42
α, β, γ (°)90, 90, 90
Resolution (Å)48.38–3.8 (3.94–3.8) *
Unique reflexions11179 (631)*
Rmerge0.23 (1.508)*
Rp.i.m 0.081 (0.548)
I / σI4.75 (1.74) *
 Completeness (%)78.01 (54.69) *
 Multiplicity9.1 (9.6) *
 CC (1/2)0.992 (0.628) *
Refinement
 Resolution (Å)48.38–3.8 (3.936–3.8)*
 No. reflections9154 (630)*
 Reflections used for Rfree§550 (51)*
Rwork§ / Rfree**0.265/0.308
 No. atoms
 Protein4440
 Ligand/ion0
 Water0
 Wilson B (Å2)75.8
 Average B-factors (Å2)
 Overall91.76
 Protein91.76
 Ligand/ion
 Water
 R.m.s deviations
 Bond lengths (Å)0.003
 Bond angles (°)0.66
 Ramachandran Plot (%)
 Favored96.65
 Outliers0.37
 PDB ID7AEJ
  1. *Data collected from two crystals were used for structure determination.

    The statistics are for data that were truncated by STARANISO to remove poorly measured reflections affected by anisotropy. Rmerge, Rp.i.m and multiplicity are calculated on unmerged data prior to STARANISO truncation. For comparison, after STARANISO truncation, Rmerge in the resolution shell 3.97 Å - 3.85 Å is 0.787.

  2. Parentheses refer to outer shell statistics.

    Rmerge = Σhkl Σi | Ihkl,i- < Ihkl > | / Σhkl ΣiIhkl,i, where Ihkl,i is the scaled intensity of the ith measurement of reflection h, k, l, and <Ihkl > is the average intensity for that reflection.

  3. § R p.i.m. = Σhkl √1/(n-1) Σi | Ihkl,i- < Ihkl > | / Σhkl ΣiIhkl,i,.

    Rwork = Σhkl | Fo - Fc | / Σhkl | Fo | x 100, where Fo and Fc are the observed and calculated structures factors.

  4. ** Rfree was calculated as for Rwork, but on a test set of 5% of the data excluded from refinement.

Table 2
Pseudovirus neutralization by 2H10, 2H10-F, 2H10-RKRF, and bi-2H10 in comparison to 2F5 and VRC01.

IC50s are indicated in µg/ml.

Tier2H10 wt2H10-F2H10-RKRFBi-2H102F5VRC01
NL4-3125.2018.689.151.840.160.20
MN-31>50.0030.389.361.390.030.06
BaL.261>50.0019.389.636.051.210.13
SF1621a>50.00>50.0025.196.141.220.39
SF162P3222.0413.146.761.321.960.24
SC422661.82>50.00>50.0027.933.791.000.27
JR-FL244.6516.936.951.490.970.11
JR-CSF2>50.0021.6610.852.851.240.37
QH0692.422>50.00>50.00>50.00>50.001.201.21
THRO4156.182>50.00>50.00>50.00>50.00>50.003.84
Key resources table
Reagent type
(species) or
resource
DesignationSource or
reference
IdentifiersAdditional
information
Recombinant DNA reagentChain N pETM20 (plasmid)This studypETM20, PEPcore facility-EMBL
Recombinant DNA reagentChain C pETM11
(plasmid)
This studypETM11, PEPcore facility-EMBL
Recombinant DNA reagent2H10 pAX51
(plasmid)
Lutje Hulsik et al., 2013PMID:23505368
Recombinant DNA reagent2H10-F pAX51
(plasmid)
This studyS100d to F mutation
Recombinant DNA reagent2H10-RKRF pAX51
(plasmid)
This studyS27R, S30K, S74R and S100d to F mutations
Strain, strain background (Escherichia coli)BL21(DE3)ThermoFisherCat# EC0114
Strain, strain background (Escherichia coli)C41(DE3)LucigenCat#60442
Cell line
(Homo sapiens)
TZM-blNIH AIDS Reagent ProgramCat#ARP-8129
RRID:CVCL_B478
Cell line
(Homo sapiens)
HEK293TATTCCat# CRL-11268
RRID:CVCL_1926
Antibody
(human monoclonal)
α-gp41, LN01Pinto et al., 2019PMID:31653484See Materials and methods
Antibody
(human monoclonal)
α-gp41, 10E8Huang et al., 2012PMID:23151583
RRID:AB_2491067
See Materials and methods
Antibody
(human monoclonal)
α-gp41, 2F5Muster et al., 1993PMID:7692082See Materials and methods
Antibody
(human monoclonal)
α-gp140, VRC01Zhou et al., 2010PMID:20616231
RRID:AB_2491019
See Materials and methods
Antibody
(llama nanobody)
α-gp41, 2H10Lutje Hulsik et al., 2013PMID:23505368See Materials and methods
Antibody
(llama nanobody)
α-gp41, bi-2H10Lutje Hulsik et al., 2013PMID:23505368See Materials and methods
Antibody
(llama nanobody)
α-gp41, 2H10-FThis studySee Materials and methods
Antibody
(llama nanobody)
α-gp41, 2H10-RKRFThis studySee Materials and methods
Chemical compound, drugChelating sepharose
FF
GE HealthcareCat# 17057501
Chemical compound, drugQ sepharose FFGE HealthcareCat# 17051010
Chemical compound, drugQ sepharose FFGE HealthcareCat# 17051010
Chemical compound, drugn-Octyl-β-D-glucosid n-Octyl-β-D-GlucopyranosideAnatraceCat#O311
Chemical compound, drugCHAPS (3-[(3-cholamidopropyl) diméthylammonio]−1-propanesulfonate)EuromedexCat#1083E
Chemical compound, drug1-palmitoyl-2-oleoylphosphatidylcholine
(POPC)
Avanti Polar LipidsCat#850457P
Chemical compound, drug1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine
(POPE)
Avanti Polar LipidsCat#850757P
Chemical compound, drug1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L
-serine
(POPS)
Avanti Polar LipidsCat#840034C
Chemical compound, drugsphingomyelinAvanti Polar LipidsCat#860062C
Chemical compound, drugcholesterolAvanti Polar LipidsCat#700000P
Chemical compound, drugN-(7-nitro-benz-2-oxa-1,3-diazol-4-yl)phosphatidylethanolamine (N-NBD-PE)Molecular ProbesCat#N360
Chemical compound, drugN-(lissamine Rhodamine B sulfonyl) phosphatidylethanolamine (N-Rh-PE)Molecular ProbesCat#L1392
Chemical compound, drugBiscinchoninic Acid microassayPierceCat# 23235
Chemical compound, drugBio-Rad Protein Assay Dye Reagent Concentrate
BioradCat# 5000006
Software, algorithmXDSKabsch, 2010PMID:20124693
Software, algorithmPhaserMcCoy et al., 2007PMID:19461840
Software, algorithmCOOTEmsley et al., 2010PMID:20383002
Software, algorithmPHENIXAdams et al., 2010PMID:20124702
Software, algorithmSBGridMorin et al., 2013https://sbgrid.org/
Software, algorithmPymolWarren DeLanohttp://www.pymol.org
Software, algorithmAimlessEvans and Murshudov, 2013PMID:23793146
Software, algorithmSTARANISOTickle et al., 2018http://staraniso.globalphasing.org/cgi-bin/staraniso.cgi
Software, algorithmCHARMM-GUIJo et al., 2008http://www.charmm-gui.org
Software, algorithmNAMD (Version 2.13)Phillips et al., 2005https://www.ks.uiuc.edu/Research/namd/
Software, algorithmPrism 8GraphPadhttps://www.graphpad.com/scientific-software/prism/
Software, algorithmForteBio analysis software version 11.1.0.25ForteBiohttps://www.fortebio.com
Software, algorithmMicroCal Origin software (origin 7)Malvern Panalytical
(MicroCal)
https://www.malvernpanalytical.com
Peptide, recombinant proteinNEQELLELDKWASLW NWFNITNWLWYIK (N-MPER)This studySee Materials and methods
Peptide, recombinant proteinKKK-NWFDITNWLWYIKLFIMIVGGLV-KK (C-MPER),This studySee Materials and methods
Commercial assay or kitBiscinchoninic Acid microassayPierceCat# A53225
Commercial assay or kitBright-Glo Luciferase Assay System
Streptavidin (SA) biosensors
PromegaCat# E2610
Commercial assay or kitStreptavidin (SA) biosensorsForteBioCat#18–5019
Commercial assay or kitEZ-LinkNHS-PEG4-Biotinylation KitThermoFisherCat#21455

Additional files

Download links