Structure of HIV-1 gp41 with its membrane anchors targeted by neutralizing antibodies

  1. Caillat Christophe
  2. Delphine Guilligay
  3. Johana Torralba
  4. Nikolas Friedrich
  5. Jose L Nieva
  6. Alexandra Trkola
  7. Christophe J Chipot
  8. François L Dehez
  9. Winfried Weissenhorn  Is a corresponding author
  1. Univ. Grenoble Alpes, France
  2. University of the Basque Country, Biofisika Institute, Spain
  3. University of Zurich, Switzerland
  4. Université de Lorraine, France
  5. University of Lorraine, France

Abstract

The HIV-1 gp120/gp41 trimer undergoes a series of conformational changes in order to catalyze gp41-induced fusion of viral and cellular membranes. Here, we present the crystal structure of gp41 locked in a fusion intermediate state by an MPER-specific neutralizing antibody. The structure illustrates the conformational plasticity of the six membrane anchors arranged asymmetrically with the fusion peptides and the transmembrane regions pointing into different directions. Hinge regions located adjacent to the fusion peptide and the transmembrane region facilitate the conformational flexibility that allows high affinity binding of broadly neutralizing anti-MPER antibodies. Molecular dynamics simulation of the MPER Ab-stabilized gp41 conformation reveals a possible transition pathway into the final post-fusion conformation with the central fusion peptides forming a hydrophobic core with flanking transmembrane regions. This suggests that MPER-specific broadly neutralizing antibodies can block final steps of refolding of the fusion peptide and the transmembrane region, which is required for completing membrane fusion.

Data availability

Diffraction data have been deposited in PDB under the accession code 7AEJ.All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Table 2.

The following data sets were generated

Article and author information

Author details

  1. Caillat Christophe

    IBS, Univ. Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Delphine Guilligay

    IBS, Univ. Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Johana Torralba

    Department of Biochemistry and Molecular Biology, University of the Basque Country, Biofisika Institute, Bilbao, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Nikolas Friedrich

    Institute of Medical Virology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0694-657X
  5. Jose L Nieva

    Department of Biochemistry and Molecular Biology, University of the Basque Country, Biofisika Institute, Bilbao, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexandra Trkola

    Institute of Medical Virology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1013-876X
  7. Christophe J Chipot

    UMR 7565, Université de Lorraine, Vandœuvre-lès-Nancy cedex, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9122-1698
  8. François L Dehez

    Laboratoire de Physique et Chimie Théoriques, University of Lorraine, Vandoeuvre-lès-Nancy, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Winfried Weissenhorn

    IBS, Univ. Grenoble Alpes, Grenoble, France
    For correspondence
    winfried.weissenhorn@ibs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5532-4959

Funding

H2020 Health (681137)

  • Winfried Weissenhorn

Agence Nationale de la Recherche (ANR-17-EURE-0003)

  • Winfried Weissenhorn

Ministerio de Economía, Industria y Competitividad, Gobierno de España (BIO2015-64421-R)

  • Jose L Nieva

Ministerio de Ciencia, Innovación y Universidades (RTI2018-095624-B-C21)

  • Jose L Nieva

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Christophe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,452
    views
  • 312
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caillat Christophe
  2. Delphine Guilligay
  3. Johana Torralba
  4. Nikolas Friedrich
  5. Jose L Nieva
  6. Alexandra Trkola
  7. Christophe J Chipot
  8. François L Dehez
  9. Winfried Weissenhorn
(2021)
Structure of HIV-1 gp41 with its membrane anchors targeted by neutralizing antibodies
eLife 10:e65005.
https://doi.org/10.7554/eLife.65005

Share this article

https://doi.org/10.7554/eLife.65005

Further reading

    1. Medicine
    2. Microbiology and Infectious Disease
    Berit Siedentop, Viacheslav N Kachalov ... Sebastian Bonhoeffer
    Research Article

    Background:

    Under which conditions antibiotic combination therapy decelerates rather than accelerates resistance evolution is not well understood. We examined the effect of combining antibiotics on within-patient resistance development across various bacterial pathogens and antibiotics.

    Methods:

    We searched CENTRAL, EMBASE, and PubMed for (quasi)-randomised controlled trials (RCTs) published from database inception to 24 November 2022. Trials comparing antibiotic treatments with different numbers of antibiotics were included. Patients were considered to have acquired resistance if, at the follow-up culture, a resistant bacterium (as defined by the study authors) was detected that had not been present in the baseline culture. We combined results using a random effects model and performed meta-regression and stratified analyses. The trials’ risk of bias was assessed with the Cochrane tool.

    Results:

    42 trials were eligible and 29, including 5054 patients, qualified for statistical analysis. In most trials, resistance development was not the primary outcome and studies lacked power. The combined odds ratio for the acquisition of resistance comparing the group with the higher number of antibiotics with the comparison group was 1.23 (95% CI 0.68–2.25), with substantial between-study heterogeneity (I2=77%). We identified tentative evidence for potential beneficial or detrimental effects of antibiotic combination therapy for specific pathogens or medical conditions.

    Conclusions:

    The evidence for combining a higher number of antibiotics compared to fewer from RCTs is scarce and overall compatible with both benefit or harm. Trials powered to detect differences in resistance development or well-designed observational studies are required to clarify the impact of combination therapy on resistance.

    Funding:

    Support from the Swiss National Science Foundation (grant 310030B_176401 (SB, BS, CW), grant 32FP30-174281 (ME), grant 324730_207957 (RDK)) and from the National Institute of Allergy and Infectious Diseases (NIAID, cooperative agreement AI069924 (ME)) is gratefully acknowledged.

    1. Microbiology and Infectious Disease
    Dipasree Hajra, Raju S Rajmani ... Dipshikha Chakravortty
    Research Article

    Sirtuins are the major players in host immunometabolic regulation. However, the role of sirtuins in the modulation of the immune metabolism pertaining to salmonellosis is largely unknown. Here, our investigation focussed on the role of two important sirtuins, SIRT1 and SIRT3, shedding light on their impact on intracellular Salmonella’s metabolic switch and pathogenesis establishment. Our study indicated the ability of the live Salmonella Typhimurium to differentially regulate the levels of SIRT1 and SIRT3 for maintaining the high glycolytic metabolism and low fatty acid metabolism in Salmonella. Perturbing SIRT1 or SIRT3 through knockdown or inhibition resulted in a remarkable shift in the host metabolism to low fatty acid oxidation and high glycolysis. This switch led to decreased proliferation of Salmonella in the macrophages. Further, Salmonella-induced higher levels of SIRT1 and SIRT3 led to a skewed polarization state of the macrophages from a pro-inflammatory M1 state toward an immunosuppressive M2, making it more conducive for the intracellular life of Salmonella. Alongside, governing immunological functions by modulating p65 NF-κB acetylation, SIRT1, and SIRT3 also skew Salmonella-induced host metabolic switch by regulating the acetylation status of HIF-1α and PDHA1. Interestingly, though knockdown of SIRT1/3 attenuated Salmonella proliferation in macrophages, in in vivo mice model of infection, inhibition or knockdown of SIRT1/3 led to more dissemination and higher organ burden, which can be attributed to enhanced ROS and IL-6 production. Our study hence reports for the first time that Salmonella modulates SIRT1/3 levels to maintain its own metabolism for successful pathogenesis.