Structure of HIV-1 gp41 with its membrane anchors targeted by neutralizing antibodies

  1. Caillat Christophe
  2. Delphine Guilligay
  3. Johana Torralba
  4. Nikolas Friedrich
  5. Jose L Nieva
  6. Alexandra Trkola
  7. Christophe J Chipot
  8. François L Dehez
  9. Winfried Weissenhorn  Is a corresponding author
  1. Univ. Grenoble Alpes, France
  2. University of the Basque Country, Biofisika Institute, Spain
  3. University of Zurich, Switzerland
  4. Université de Lorraine, France
  5. University of Lorraine, France

Abstract

The HIV-1 gp120/gp41 trimer undergoes a series of conformational changes in order to catalyze gp41-induced fusion of viral and cellular membranes. Here, we present the crystal structure of gp41 locked in a fusion intermediate state by an MPER-specific neutralizing antibody. The structure illustrates the conformational plasticity of the six membrane anchors arranged asymmetrically with the fusion peptides and the transmembrane regions pointing into different directions. Hinge regions located adjacent to the fusion peptide and the transmembrane region facilitate the conformational flexibility that allows high affinity binding of broadly neutralizing anti-MPER antibodies. Molecular dynamics simulation of the MPER Ab-stabilized gp41 conformation reveals a possible transition pathway into the final post-fusion conformation with the central fusion peptides forming a hydrophobic core with flanking transmembrane regions. This suggests that MPER-specific broadly neutralizing antibodies can block final steps of refolding of the fusion peptide and the transmembrane region, which is required for completing membrane fusion.

Data availability

Diffraction data have been deposited in PDB under the accession code 7AEJ.All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Table 2.

The following data sets were generated

Article and author information

Author details

  1. Caillat Christophe

    IBS, Univ. Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Delphine Guilligay

    IBS, Univ. Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Johana Torralba

    Department of Biochemistry and Molecular Biology, University of the Basque Country, Biofisika Institute, Bilbao, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Nikolas Friedrich

    Institute of Medical Virology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0694-657X
  5. Jose L Nieva

    Department of Biochemistry and Molecular Biology, University of the Basque Country, Biofisika Institute, Bilbao, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexandra Trkola

    Institute of Medical Virology, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1013-876X
  7. Christophe J Chipot

    UMR 7565, Université de Lorraine, Vandœuvre-lès-Nancy cedex, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9122-1698
  8. François L Dehez

    Laboratoire de Physique et Chimie Théoriques, University of Lorraine, Vandoeuvre-lès-Nancy, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Winfried Weissenhorn

    IBS, Univ. Grenoble Alpes, Grenoble, France
    For correspondence
    winfried.weissenhorn@ibs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5532-4959

Funding

H2020 Health (681137)

  • Winfried Weissenhorn

Agence Nationale de la Recherche (ANR-17-EURE-0003)

  • Winfried Weissenhorn

Ministerio de Economía, Industria y Competitividad, Gobierno de España (BIO2015-64421-R)

  • Jose L Nieva

Ministerio de Ciencia, Innovación y Universidades (RTI2018-095624-B-C21)

  • Jose L Nieva

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Axel T Brunger, Stanford University, United States

Version history

  1. Received: November 18, 2020
  2. Accepted: April 18, 2021
  3. Accepted Manuscript published: April 19, 2021 (version 1)
  4. Version of Record published: April 29, 2021 (version 2)

Copyright

© 2021, Christophe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,067
    Page views
  • 278
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caillat Christophe
  2. Delphine Guilligay
  3. Johana Torralba
  4. Nikolas Friedrich
  5. Jose L Nieva
  6. Alexandra Trkola
  7. Christophe J Chipot
  8. François L Dehez
  9. Winfried Weissenhorn
(2021)
Structure of HIV-1 gp41 with its membrane anchors targeted by neutralizing antibodies
eLife 10:e65005.
https://doi.org/10.7554/eLife.65005

Share this article

https://doi.org/10.7554/eLife.65005

Further reading

    1. Microbiology and Infectious Disease
    Nguyen Thi Khanh Nhu, Minh-Duy Phan ... Mark A Schembri
    Research Article

    Neonatal meningitis is a devastating disease associated with high mortality and neurological sequelae. Escherichia coli is the second most common cause of neonatal meningitis in full-term infants (herein NMEC) and the most common cause of meningitis in preterm neonates. Here, we investigated the genomic relatedness of a collection of 58 NMEC isolates spanning 1974–2020 and isolated from seven different geographic regions. We show NMEC are comprised of diverse sequence types (STs), with ST95 (34.5%) and ST1193 (15.5%) the most common. No single virulence gene profile was conserved in all isolates; however, genes encoding fimbrial adhesins, iron acquisition systems, the K1 capsule, and O antigen types O18, O75, and O2 were most prevalent. Antibiotic resistance genes occurred infrequently in our collection. We also monitored the infection dynamics in three patients that suffered recrudescent invasive infection caused by the original infecting isolate despite appropriate antibiotic treatment based on antibiogram profile and resistance genotype. These patients exhibited severe gut dysbiosis. In one patient, the causative NMEC isolate was also detected in the fecal flora at the time of the second infection episode and after treatment. Thus, although antibiotics are the standard of care for NMEC treatment, our data suggest that failure to eliminate the causative NMEC that resides intestinally can lead to the existence of a refractory reservoir that may seed recrudescent infection.

    1. Microbiology and Infectious Disease
    Swati Jain, Gherman Uritskiy ... Venigalla B Rao
    Research Article

    A productive HIV-1 infection in humans is often established by transmission and propagation of a single transmitted/founder (T/F) virus, which then evolves into a complex mixture of variants during the lifetime of infection. An effective HIV-1 vaccine should elicit broad immune responses in order to block the entry of diverse T/F viruses. Currently, no such vaccine exists. An in-depth study of escape variants emerging under host immune pressure during very early stages of infection might provide insights into such a HIV-1 vaccine design. Here, in a rare longitudinal study involving HIV-1 infected individuals just days after infection in the absence of antiretroviral therapy, we discovered a remarkable genetic shift that resulted in near complete disappearance of the original T/F virus and appearance of a variant with H173Y mutation in the variable V2 domain of the HIV-1 envelope protein. This coincided with the disappearance of the first wave of strictly H173-specific antibodies and emergence of a second wave of Y173-specific antibodies with increased breadth. Structural analyses indicated conformational dynamism of the envelope protein which likely allowed selection of escape variants with a conformational switch in the V2 domain from an α-helix (H173) to a β-strand (Y173) and induction of broadly reactive antibody responses. This differential breadth due to a single mutational change was also recapitulated in a mouse model. Rationally designed combinatorial libraries containing 54 conformational variants of V2 domain around position 173 further demonstrated increased breadth of antibody responses elicited to diverse HIV-1 envelope proteins. These results offer new insights into designing broadly effective HIV-1 vaccines.