Learning to stand with unexpected sensorimotor delays

  1. Brandon G Rasman
  2. Patrick A Forbes
  3. Ryan M Peters
  4. Oscar Ortiz
  5. Ian Franks
  6. J Timothy Inglis
  7. Romeo Chua
  8. Jean-Sebastien Blouin  Is a corresponding author
  1. University of Otago, New Zealand
  2. Erasmus University Medical Centre, Netherlands
  3. University of Calgary, Canada
  4. University of New Brunswick, Canada
  5. University of British Columbia, Canada

Abstract

Human standing balance relies on self-motion estimates that are used by the nervous system to detect unexpected movements and enable corrective responses and adaptations in control. These estimates must accommodate for inherent delays in sensory and motor pathways. Here, we used a robotic system to simulate human standing in the anteroposterior direction about the ankles and impose sensorimotor delays into the control of balance. Imposed delays destabilized standing, but through training, participants adapted and re-learned to balance with the delays. Before training, imposed delays attenuated vestibular contributions to balance and triggered perceptions of unexpected standing motion, suggesting increased uncertainty in the internal self-motion estimates. After training, vestibular contributions partially returned to baseline levels and larger delays were needed to evoke perceptions of unexpected standing motion. Through learning, the nervous system accommodates balance sensorimotor delays by causally linking whole-body sensory feedback (initially interpreted as imposed motion) to self-generated balance motor commands.

Data availability

We have created a Dataverse link for the source files needed to generate the group result figures. This can be found at https://doi.org/10.5683/SP2/IKX9ML. Source files will be published and publicly available upon acceptance for publication.

The following data sets were generated

Article and author information

Author details

  1. Brandon G Rasman

    School of Physical Education, Sport, and Exercise Sciences, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8031-8320
  2. Patrick A Forbes

    Department of Neuroscience, Erasmus University Medical Centre, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0230-9971
  3. Ryan M Peters

    Faculty of Kinesiology, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Oscar Ortiz

    Faculty of Kinesiology, University of New Brunswick, Fredericton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Ian Franks

    School of Kinesiology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. J Timothy Inglis

    School of Kinesiology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Romeo Chua

    School of Kinesiology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Jean-Sebastien Blouin

    School of Kinesiology, University of British Columbia, Vancouver, Canada
    For correspondence
    jsblouin@mail.ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0046-4051

Funding

Natural Sciences and Engineering Research Council of Canada (Graduate Student Scholarship)

  • Brandon G Rasman

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO #016. Veni. 188.049)

  • Patrick A Forbes

Natural Sciences and Engineering Research Council of Canada (RGPIN-2020-05438)

  • Jean-Sebastien Blouin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The experimental protocol was verbally explained before the experiment and written informed consent was obtained. The experiments were approved by the University of British Columbia Human Research Ethics Committee and conformed to the Declaration of Helsinki, with the exception of registration to a database.

Copyright

© 2021, Rasman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,449
    views
  • 252
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brandon G Rasman
  2. Patrick A Forbes
  3. Ryan M Peters
  4. Oscar Ortiz
  5. Ian Franks
  6. J Timothy Inglis
  7. Romeo Chua
  8. Jean-Sebastien Blouin
(2021)
Learning to stand with unexpected sensorimotor delays
eLife 10:e65085.
https://doi.org/10.7554/eLife.65085

Share this article

https://doi.org/10.7554/eLife.65085

Further reading

    1. Neuroscience
    Andrea Sattin, Chiara Nardin ... Tommaso Fellin
    Research Advance

    Two-photon (2P) fluorescence imaging through gradient index (GRIN) lens-based endoscopes is fundamental to investigate the functional properties of neural populations in deep brain circuits. However, GRIN lenses have intrinsic optical aberrations, which severely degrade their imaging performance. GRIN aberrations decrease the signal-to-noise ratio (SNR) and spatial resolution of fluorescence signals, especially in lateral portions of the field-of-view (FOV), leading to restricted FOV and smaller number of recorded neurons. This is especially relevant for GRIN lenses of several millimeters in length, which are needed to reach the deeper regions of the rodent brain. We have previously demonstrated a novel method to enlarge the FOV and improve the spatial resolution of 2P microendoscopes based on GRIN lenses of length <4.1 mm (Antonini et al., 2020). However, previously developed microendoscopes were too short to reach the most ventral regions of the mouse brain. In this study, we combined optical simulations with fabrication of aspherical polymer microlenses through three-dimensional (3D) microprinting to correct for optical aberrations in long (length >6 mm) GRIN lens-based microendoscopes (diameter, 500 µm). Long corrected microendoscopes had improved spatial resolution, enabling imaging in significantly enlarged FOVs. Moreover, using synthetic calcium data we showed that aberration correction enabled detection of cells with higher SNR of fluorescent signals and decreased cross-contamination between neurons. Finally, we applied long corrected microendoscopes to perform large-scale and high-precision recordings of calcium signals in populations of neurons in the olfactory cortex, a brain region laying approximately 5 mm from the brain surface, of awake head-fixed mice. Long corrected microendoscopes are powerful new tools enabling population imaging with unprecedented large FOV and high spatial resolution in the most ventral regions of the mouse brain.

    1. Neuroscience
    Yafen Li, Yixuan Lin ... Antao Chen
    Research Article

    Concurrent verbal working memory task can eliminate the color-word Stroop effect. Previous research, based on specific and limited resources, suggested that the disappearance of the conflict effect was due to the memory information preempting the resources for distractors. However, it remains unclear which particular stage of Stroop conflict processing is influenced by working memory loads. In this study, electroencephalography (EEG) recordings with event-related potential (ERP) analyses, time-frequency analyses, multivariate pattern analyses (MVPAs), and representational similarity analyses (RSAs) were applied to provide an in-depth investigation of the aforementioned issue. Subjects were required to complete the single task (the classical manual color-word Stroop task) and the dual task (the Sternberg working memory task combined with the Stroop task), respectively. Behaviorally, the results indicated that the Stroop effect was eliminated in the dual-task condition. The EEG results showed that the concurrent working memory task did not modulate the P1, N450, and alpha bands. However, it modulated the sustained potential (SP), late theta (740–820 ms), and beta (920–1040 ms) power, showing no difference between congruent and incongruent trials in the dual-task condition but significant difference in the single-task condition. Importantly, the RSA results revealed that the neural activation pattern of the late theta was similar to the response interaction pattern. Together, these findings implied that the concurrent working memory task eliminated the Stroop effect through disrupting stimulus-response mapping.