1. Neuroscience
Download icon

Learning to stand with unexpected sensorimotor delays

  1. Brandon G Rasman
  2. Patrick A Forbes
  3. Ryan M Peters
  4. Oscar Ortiz
  5. Ian Franks
  6. J Timothy Inglis
  7. Romeo Chua
  8. Jean-Sebastien Blouin  Is a corresponding author
  1. University of Otago, New Zealand
  2. Erasmus University Medical Centre, Netherlands
  3. University of Calgary, Canada
  4. University of New Brunswick, Canada
  5. University of British Columbia, Canada
Research Article
  • Cited 0
  • Views 270
  • Annotations
Cite this article as: eLife 2021;10:e65085 doi: 10.7554/eLife.65085

Abstract

Human standing balance relies on self-motion estimates that are used by the nervous system to detect unexpected movements and enable corrective responses and adaptations in control. These estimates must accommodate for inherent delays in sensory and motor pathways. Here, we used a robotic system to simulate human standing in the anteroposterior direction about the ankles and impose sensorimotor delays into the control of balance. Imposed delays destabilized standing, but through training, participants adapted and re-learned to balance with the delays. Before training, imposed delays attenuated vestibular contributions to balance and triggered perceptions of unexpected standing motion, suggesting increased uncertainty in the internal self-motion estimates. After training, vestibular contributions partially returned to baseline levels and larger delays were needed to evoke perceptions of unexpected standing motion. Through learning, the nervous system accommodates balance sensorimotor delays by causally linking whole-body sensory feedback (initially interpreted as imposed motion) to self-generated balance motor commands.

Data availability

We have created a Dataverse link for the source files needed to generate the group result figures. This can be found at https://doi.org/10.5683/SP2/IKX9ML. Source files will be published and publicly available upon acceptance for publication.

The following data sets were generated

Article and author information

Author details

  1. Brandon G Rasman

    School of Physical Education, Sport, and Exercise Sciences, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8031-8320
  2. Patrick A Forbes

    Department of Neuroscience, Erasmus University Medical Centre, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0230-9971
  3. Ryan M Peters

    Faculty of Kinesiology, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Oscar Ortiz

    Faculty of Kinesiology, University of New Brunswick, Fredericton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Ian Franks

    School of Kinesiology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. J Timothy Inglis

    School of Kinesiology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Romeo Chua

    School of Kinesiology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Jean-Sebastien Blouin

    School of Kinesiology, University of British Columbia, Vancouver, Canada
    For correspondence
    jsblouin@mail.ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0046-4051

Funding

Natural Sciences and Engineering Research Council of Canada (Graduate Student Scholarship)

  • Brandon G Rasman

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO #016. Veni. 188.049)

  • Patrick A Forbes

Natural Sciences and Engineering Research Council of Canada (RGPIN-2020-05438)

  • Jean-Sebastien Blouin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The experimental protocol was verbally explained before the experiment and written informed consent was obtained. The experiments were approved by the University of British Columbia Human Research Ethics Committee and conformed to the Declaration of Helsinki, with the exception of registration to a database.

Reviewing Editor

  1. Noah J Cowan, Johns Hopkins University, United States

Publication history

  1. Received: November 22, 2020
  2. Accepted: August 4, 2021
  3. Accepted Manuscript published: August 10, 2021 (version 1)

Copyright

© 2021, Rasman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 270
    Page views
  • 58
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Debora Fusca, Peter Kloppenburg
    Research Article

    Local interneurons (LNs) mediate complex interactions within the antennal lobe, the primary olfactory system of insects, and the functional analog of the vertebrate olfactory bulb. In the cockroach Periplaneta americana, as in other insects, several types of LNs with distinctive physiological and morphological properties can be defined. Here, we combined whole-cell patch-clamp recordings and Ca2+ imaging of individual LNs to analyze the role of spiking and nonspiking LNs in inter- and intraglomerular signaling during olfactory information processing. Spiking GABAergic LNs reacted to odorant stimulation with a uniform rise in [Ca2+]i in the ramifications of all innervated glomeruli. In contrast, in nonspiking LNs, glomerular Ca2+ signals were odorant specific and varied between glomeruli, resulting in distinct, glomerulus-specific tuning curves. The cell type-specific differences in Ca2+ dynamics support the idea that spiking LNs play a primary role in interglomerular signaling, while they assign nonspiking LNs an essential role in intraglomerular signaling.

    1. Neuroscience
    Wanhui Sheng et al.
    Research Article Updated

    Hypothalamic oxytocinergic magnocellular neurons have a fascinating ability to release peptide from both their axon terminals and from their dendrites. Existing data indicates that the relationship between somatic activity and dendritic release is not constant, but the mechanisms through which this relationship can be modulated are not completely understood. Here, we use a combination of electrical and optical recording techniques to quantify activity-induced calcium influx in proximal vs. distal dendrites of oxytocinergic magnocellular neurons located in the paraventricular nucleus of the hypothalamus (OT-MCNs). Results reveal that the dendrites of OT-MCNs are weak conductors of somatic voltage changes; however, activity-induced dendritic calcium influx can be robustly regulated by both osmosensitive and non-osmosensitive ion channels located along the dendritic membrane. Overall, this study reveals that dendritic conductivity is a dynamic and endogenously regulated feature of OT-MCNs that is likely to have substantial functional impact on central oxytocin release.