Nucleo-cytoplasmic shuttling of splicing factor SRSF1 is required for development and cilia function

  1. Fiona Haward
  2. Magdalena M Maslon
  3. Patricia L Yeyati
  4. Nicolas Bellora
  5. Jan Niklas Hansen
  6. Stuart Aitken
  7. Jennifer Lawson
  8. Alex von Kriegsheim
  9. Dagmar Wachten
  10. Pleasantine Mill  Is a corresponding author
  11. Ian R Adams  Is a corresponding author
  12. Javier F Caceres  Is a corresponding author
  1. MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom
  2. Institute of Nuclear Technologies for Health (Intecnus), Argentina
  3. University of Bonn, Institute of Innate Immunity, Medical Faculty, Germany
  4. Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, United Kingdom

Abstract

Shuttling RNA-binding proteins coordinate nuclear and cytoplasmic steps of gene expression. The SR family proteins regulate RNA splicing in the nucleus and a subset of them, including SRSF1, shuttles between the nucleus and cytoplasm affecting post-splicing processes. However, the physiological significance of this remains unclear. Here, we used genome editing to knock-in a nuclear retention signal (NRS) in Srsf1 to create a mouse model harboring an SRSF1 protein that is retained exclusively in the nucleus. Srsf1NRS/NRS mutants displayed small body size, hydrocephalus and immotile sperm, all traits associated with ciliary defects. We observed reduced translation of a subset of mRNAs and decreased abundance of proteins involved in multiciliogenesis, with disruption of ciliary ultrastructure and motility in cells and tissues derived from this mouse model. These results demonstrate that SRSF1 shuttling is used to reprogram gene expression networks in the context of high cellular demands, as observed here, during motile ciliogenesis.

Data availability

Total RNA-seq data related to splicing analysis have been deposited in GEO under accession code GSE157269G. Polysomal, monosomal and cytoplasmic RNA-sequencing data have been deposited in GEO under accession code GSE161828. The mass spectrometry proteomics data is presented as LFQ values in the form of Excel tables in Figure 4-source data 1 and in Figure 4-figure supplement 1-source data 1. The complete raw datasests can be downloaded from ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD019859. Cilia motility data analyzed in Fiji using the custom-written ImageJ plugin "Cilility_JNH" was deposited in zenodo (https://doi.org/10.5281/zenodo.5138072).

The following data sets were generated

Article and author information

Author details

  1. Fiona Haward

    Genome Regulation Section, MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9048-5600
  2. Magdalena M Maslon

    Genome Regulation Section, MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1050-1306
  3. Patricia L Yeyati

    Genome Regulation Section, MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicolas Bellora

    National Scientific and Technical Research Council (CONICET), Institute of Nuclear Technologies for Health (Intecnus), Bariloche, Argentina
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6637-3465
  5. Jan Niklas Hansen

    University of Bonn, Institute of Innate Immunity, Medical Faculty, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0489-7535
  6. Stuart Aitken

    Genome Regulation Section, MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jennifer Lawson

    Genome Regulation Section, MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Alex von Kriegsheim

    Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Dagmar Wachten

    University of Bonn, Institute of Innate Immunity, Medical Faculty, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4800-6332
  10. Pleasantine Mill

    Genome Regulation Section, MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    Plesantine.Mill@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  11. Ian R Adams

    Human Genetics Unit, MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    Ian.Adams@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8838-1271
  12. Javier F Caceres

    Genome Regulation Section, MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    Javier.Caceres@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8025-6169

Funding

Medical Research Council (MRC Core funding)

  • Javier F Caceres

H2020 European Research Council (Consolidator grant 866355)

  • Pleasantine Mill

Deutsche Forschungsgemeinschaft (Germany's Excellence Strategy)

  • Dagmar Wachten

Wellcome Trust (Multiuser Equipment 208402/Z/17)

  • Alex von Kriegsheim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This is stated in the Materials and Methods Section, 'Animal experiments'We followed international, national and institutional guidelines for the care and use of animals. Animal experiments were carried out under UK Home Office Project Licenses PPL 60/4424, PB0DC8431 and P18921CDE in facilities at the University of Edinburgh (PEL 60/2605) and were approved by the University of Edinburgh animal welfare and ethical review body.

Copyright

© 2021, Haward et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,084
    views
  • 390
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fiona Haward
  2. Magdalena M Maslon
  3. Patricia L Yeyati
  4. Nicolas Bellora
  5. Jan Niklas Hansen
  6. Stuart Aitken
  7. Jennifer Lawson
  8. Alex von Kriegsheim
  9. Dagmar Wachten
  10. Pleasantine Mill
  11. Ian R Adams
  12. Javier F Caceres
(2021)
Nucleo-cytoplasmic shuttling of splicing factor SRSF1 is required for development and cilia function
eLife 10:e65104.
https://doi.org/10.7554/eLife.65104

Share this article

https://doi.org/10.7554/eLife.65104

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Silvia Galli, Marco Di Antonio
    Insight

    The buildup of knot-like RNA structures in brain cells may be the key to understanding how uncontrolled protein aggregation drives Alzheimer’s disease.