Extensive age-dependent loss of antibody diversity in naturally short-lived turquoise killifish

Abstract

Aging individuals exhibit a pervasive decline in adaptive immune function, with important implications for health and lifespan. Previous studies have found a pervasive loss of immune-repertoire diversity in human peripheral blood during aging; however, little is known about repertoire aging in other immune compartments, or in species other than humans. Here, we perform the first study of immune-repertoire aging in an emerging model of vertebrate aging, the African turquoise killifish (Nothobranchius furzeri). Despite their extremely short lifespans, these killifish exhibit complex and individualized heavy-chain repertoires, with a generative process capable of producing millions of distinct productive sequences. Whole-body killifish repertoires decline rapidly in within-individual diversity with age, while between-individual variability increases. Large, expanded B-cell clones exhibit far greater diversity loss with age than small clones, suggesting important differences in how age affects different B cell populations. The immune repertoires of isolated intestinal samples exhibit especially dramatic age-related diversity loss, related to an elevated prevalence of expanded clones. Lower intestinal repertoire diversity was also associated with transcriptomic signatures of reduced B-cell activity, supporting a functional role for diversity changes in killifish immunosenescence. Our results highlight important differences in systemic vs. organ-specific aging dynamics in the adaptive immune system.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided. The raw data used in these analyses are available via NCBI (BioProject accession PRJNA662612). Processed data and code are freely available at https://github.com/willbradshaw/killifish-igseq/

The following data sets were generated

Article and author information

Author details

  1. William John Bradshaw

    Evolutionary and Experimental Biology of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    No competing interests declared.
  2. Michael Poeschla

    Evolutionary and Experimental Biology of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    No competing interests declared.
  3. Aleksandra Placzek

    Evolutionary and Experimental Biology of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    No competing interests declared.
  4. Samuel Kean

    Evolutionary and Experimental Biology of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    No competing interests declared.
  5. Dario Riccardo Valenzano

    Evolutionary and Experimental Biology of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    For correspondence
    dvalenzano@age.mpg.de
    Competing interests
    Dario Riccardo Valenzano, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8761-8289

Funding

Max Planck Society (Valenzano lab budget)

  • Dario Riccardo Valenzano

DFG (CRC 1310)

  • Dario Riccardo Valenzano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matt Kaeberlein, University of Washington, United States

Version history

  1. Preprint posted: August 21, 2020 (view preprint)
  2. Received: November 23, 2020
  3. Accepted: February 5, 2022
  4. Accepted Manuscript published: February 7, 2022 (version 1)
  5. Version of Record published: February 25, 2022 (version 2)

Copyright

© 2022, Bradshaw et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,609
    Page views
  • 193
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William John Bradshaw
  2. Michael Poeschla
  3. Aleksandra Placzek
  4. Samuel Kean
  5. Dario Riccardo Valenzano
(2022)
Extensive age-dependent loss of antibody diversity in naturally short-lived turquoise killifish
eLife 11:e65117.
https://doi.org/10.7554/eLife.65117

Share this article

https://doi.org/10.7554/eLife.65117

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Erandi Velazquez-Miranda, Ming He
    Insight

    Endothelial cell subpopulations are characterized by unique gene expression profiles, epigenetic landscapes and functional properties.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Xinjian Ye, Yijing Bai ... Qianming Chen
    Research Article

    Periodontitis drives irreversible destruction of periodontal tissue and is prone to exacerbating inflammatory disorders. Systemic immunomodulatory management continues to be an attractive approach in periodontal care, particularly within the context of ‘predictive, preventive, and personalized’ periodontics. The present study incorporated genetic proxies identified through genome-wide association studies for circulating immune cells and periodontitis into a comprehensive Mendelian randomization (MR) framework. Univariable MR, multivariable MR, subgroup analysis, reverse MR, and Bayesian model averaging (MR-BMA) were utilized to investigate the causal relationships. Furthermore, transcriptome-wide association study and colocalization analysis were deployed to pinpoint the underlying genes. Consequently, the MR study indicated a causal association between circulating neutrophils, natural killer T cells, plasmacytoid dendritic cells, and an elevated risk of periodontitis. MR-BMA analysis revealed that neutrophils were the primary contributors to periodontitis. The high-confidence genes S100A9 and S100A12, located on 1q21.3, could potentially serve as immunomodulatory targets for neutrophil-mediated periodontitis. These findings hold promise for early diagnosis, risk assessment, targeted prevention, and personalized treatment of periodontitis. Considering the marginal association observed in our study, further research is required to comprehend the biological underpinnings and ascertain the clinical relevance thoroughly.