Collateral sensitivity associated with antibiotic resistance plasmids

  1. Cristina Herencias
  2. Jerónimo Rodríguez-Beltrán  Is a corresponding author
  3. Ricardo León-Sampedro
  4. Aida Alonso-del Valle
  5. Jana Palkovičová
  6. Rafael Cantón
  7. Álvaro San Millán  Is a corresponding author
  1. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain
  2. Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Czech Republic
  3. Centro Nacional de Biotecnología-CSIC, Spain

Abstract

Collateral sensitivity (CS) is a promising alternative approach to counteract the rising problem of antibiotic resistance (ABR). CS occurs when the acquisition of resistance to one antibiotic produces increased susceptibility to a second antibiotic. Recent studies have focused on CS strategies designed against ABR mediated by chromosomal mutations. However, one of the main drivers of ABR in clinically relevant bacteria is the horizontal transfer of ABR genes mediated by plasmids. Here, we report the first analysis of CS associated with the acquisition of complete ABR plasmids, including the clinically important carbapenem-resistance conjugative plasmid pOXA-48. In addition, we describe the conservation of CS in clinical E. coli isolates and its application to selectively kill plasmid-carrying bacteria. Our results provide new insights that establish the basis for developing CS-informed treatment strategies to combat plasmid-mediated ABR.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3 and S2.Sequencing data have been deposited in the Sequence Read Archive (SRA) repository, BioProject ID: PRJNA644278 (https://www.ncbi.nlm.nih.gov/bioproject/644278).

The following data sets were generated

Article and author information

Author details

  1. Cristina Herencias

    Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Jerónimo Rodríguez-Beltrán

    Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
    For correspondence
    jeronimo.rodriguez.beltran@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3014-1229
  3. Ricardo León-Sampedro

    Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5317-8310
  4. Aida Alonso-del Valle

    Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Jana Palkovičová

    Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Rafael Cantón

    Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Álvaro San Millán

    Microbial Biotechnology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
    For correspondence
    asanmillan@cnb.csic.es
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Research Council (ERC-StG 757440-PLASREVOLUTION)

  • Álvaro San Millán

Instituto de Salud Carlos III (PI16-00860)

  • Álvaro San Millán

Agencia Estatal de Investigación (IJC2018-035146-I)

  • Jerónimo Rodríguez-Beltrán

Instituto de Salud Carlos III (MS15-00012)

  • Álvaro San Millán

Comunidad Autonoma de Madrid (PEJD-2018-POST/BMD-8016)

  • Cristina Herencias

European Commission (R-GNOSIS-FP7-HEALTH-F3-2011-282512)

  • Rafael Cantón

Instituto de Salud Carlos III (REIPIR D16/0016/0011)

  • Rafael Cantón

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marc Lipsitch, Harvard TH Chan School of Public Health, United States

Version history

  1. Received: November 24, 2020
  2. Accepted: January 20, 2021
  3. Accepted Manuscript published: January 20, 2021 (version 1)
  4. Version of Record published: January 26, 2021 (version 2)

Copyright

© 2021, Herencias et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,421
    Page views
  • 581
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cristina Herencias
  2. Jerónimo Rodríguez-Beltrán
  3. Ricardo León-Sampedro
  4. Aida Alonso-del Valle
  5. Jana Palkovičová
  6. Rafael Cantón
  7. Álvaro San Millán
(2021)
Collateral sensitivity associated with antibiotic resistance plasmids
eLife 10:e65130.
https://doi.org/10.7554/eLife.65130

Further reading

    1. Ecology
    2. Evolutionary Biology
    Hannah J Williams, Vivek H Sridhar ... Amanda D Melin
    Review Article

    Groups of animals inhabit vastly different sensory worlds, or umwelten, which shape fundamental aspects of their behaviour. Yet the sensory ecology of species is rarely incorporated into the emerging field of collective behaviour, which studies the movements, population-level behaviours, and emergent properties of animal groups. Here, we review the contributions of sensory ecology and collective behaviour to understanding how animals move and interact within the context of their social and physical environments. Our goal is to advance and bridge these two areas of inquiry and highlight the potential for their creative integration. To achieve this goal, we organise our review around the following themes: (1) identifying the promise of integrating collective behaviour and sensory ecology; (2) defining and exploring the concept of a ‘sensory collective’; (3) considering the potential for sensory collectives to shape the evolution of sensory systems; (4) exploring examples from diverse taxa to illustrate neural circuits involved in sensing and collective behaviour; and (5) suggesting the need for creative conceptual and methodological advances to quantify ‘sensescapes’. In the final section, (6) applications to biological conservation, we argue that these topics are timely, given the ongoing anthropogenic changes to sensory stimuli (e.g. via light, sound, and chemical pollution) which are anticipated to impact animal collectives and group-level behaviour and, in turn, ecosystem composition and function. Our synthesis seeks to provide a forward-looking perspective on how sensory ecologists and collective behaviourists can both learn from and inspire one another to advance our understanding of animal behaviour, ecology, adaptation, and evolution.

    1. Evolutionary Biology
    John S Favate, Kyle S Skalenko ... Premal Shah
    Research Article

    Changes in an organism’s environment, genome, or gene expression patterns can lead to changes in its metabolism. The metabolic phenotype can be under selection and contributes to adaptation. However, the networked and convoluted nature of an organism’s metabolism makes relating mutations, metabolic changes, and effects on fitness challenging. To overcome this challenge, we use the long-term evolution experiment (LTEE) with E. coli as a model to understand how mutations can eventually affect metabolism and perhaps fitness. We used mass spectrometry to broadly survey the metabolomes of the ancestral strains and all 12 evolved lines. We combined this metabolic data with mutation and expression data to suggest how mutations that alter specific reaction pathways, such as the biosynthesis of nicotinamide adenine dinucleotide, might increase fitness in the system. Our work provides a better understanding of how mutations might affect fitness through the metabolic changes in the LTEE and thus provides a major step in developing a complete genotype–phenotype map for this experimental system.