Efficacy profile of the CYD-TDV dengue vaccine revealed by Bayesian survival analysis of individual-level Phase III data

  1. Daniel J Laydon  Is a corresponding author
  2. Ilaria Dorigatti
  3. Wes R Hinsley
  4. Gemma L Nedjati-Gilani
  5. Laurent Coudeville
  6. Neil M Ferguson
  1. Imperial College London, United Kingdom
  2. Sanofi-Pasteur, France

Abstract

Background: Sanofi-Pasteur’s CYD-TDV is the only licensed dengue vaccine. Two phase III trials showed higher efficacy in seropositive than seronegative recipients. Hospital follow-up revealed increased hospitalisation in 2-5-year-old vaccinees, where serostatus and age effects were unresolved.

Methods: We fit a survival model to individual-level data from both trials, including year one of hospital follow-up. We determine efficacy by age, serostatus, serotype and severity, and examine efficacy duration and vaccine action mechanism.

Results: Our modelling indicates that vaccine-induced immunity is long-lived in seropositive recipients, and therefore that vaccinating seropositives gives higher protection than two natural infections. Long-term increased hospitalisation risk outweighs short-lived immunity in seronegatives. Independently of serostatus, transient immunity increases with age, and is highest against serotype 4. Benefit is higher in seropositives, and risk enhancement is greater in seronegatives, against hospitalised disease than febrile disease.

Conclusions: Our results support vaccinating seropositives only. Rapid diagnostic tests would enable viable “screen-then-vaccinate” programs. Since CYD-TDV acts as a silent infection, long-term safety of other vaccine candidates must be closely monitored.

Funding: Bill and Melinda Gates Foundation, National Institute for Health Research, UK Medical Research Council, Wellcome Trust.

Data availability

Qualified researchers may request access to patient level data and related study documents including the clinical study report, study protocol with any amendments, blank case report form, statistical analysis plan, and dataset specifications. Patient level data will be anonymized and study documents will be redacted to protect the privacy of trial participants. Further details on Sanofi's data sharing criteria, eligible studies, and process for requesting access can be found at: https://www.clinicalstudydatarequest.com. Additional details of the trial designs and data can be found in Sridhar et al (NEJM 2018).All model code is available at https://github.com/dlaydon/DengVaxSurvival, which is linked to in the manuscript. This repository also contains simulated data, generated to closely match the trial data, giving comparable case numbers across strata. When our model is fitted to the simulated data, the resulting parameter estimates closely approximate the results presented in this analysis.

Article and author information

Author details

  1. Daniel J Laydon

    Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
    For correspondence
    d.laydon@imperial.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4270-3321
  2. Ilaria Dorigatti

    Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9959-0706
  3. Wes R Hinsley

    Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Gemma L Nedjati-Gilani

    Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Laurent Coudeville

    Sanofi-Pasteur, Sanofi-Pasteur, Lyon, France
    Competing interests
    Laurent Coudeville, Laurent Coudeville is employed by Sanofi-Pasteur.
  6. Neil M Ferguson

    MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.

Funding

Bill and Melinda Gates Foundation

  • Daniel J Laydon
  • Gemma L Nedjati-Gilani
  • Neil M Ferguson

National Institute for Health Research (NIHR: PR-OD-1017-20002)

  • Daniel J Laydon
  • Gemma L Nedjati-Gilani
  • Neil M Ferguson

Medical Research Council (MR/R015600/1)

  • Daniel J Laydon
  • Ilaria Dorigatti
  • Wes R Hinsley
  • Gemma L Nedjati-Gilani
  • Neil M Ferguson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ben S Cooper, Mahidol University, Thailand

Version history

  1. Received: November 24, 2020
  2. Accepted: June 29, 2021
  3. Accepted Manuscript published: July 2, 2021 (version 1)
  4. Version of Record published: July 29, 2021 (version 2)
  5. Version of Record updated: August 4, 2021 (version 3)

Copyright

© 2021, Laydon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 946
    Page views
  • 117
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel J Laydon
  2. Ilaria Dorigatti
  3. Wes R Hinsley
  4. Gemma L Nedjati-Gilani
  5. Laurent Coudeville
  6. Neil M Ferguson
(2021)
Efficacy profile of the CYD-TDV dengue vaccine revealed by Bayesian survival analysis of individual-level Phase III data
eLife 10:e65131.
https://doi.org/10.7554/eLife.65131

Share this article

https://doi.org/10.7554/eLife.65131

Further reading

    1. Epidemiology and Global Health
    Olivera Djuric, Elisabetta Larosa ... The Reggio Emilia Covid-19 Working Group
    Research Article

    Background:

    The aim of our study was to test the hypothesis that the community contact tracing strategy of testing contacts in households immediately instead of at the end of quarantine had an impact on the transmission of SARS-CoV-2 in schools in Reggio Emilia Province.

    Methods:

    We analysed surveillance data on notification of COVID-19 cases in schools between 1 September 2020 and 4 April 2021. We have applied a mediation analysis that allows for interaction between the intervention (before/after period) and the mediator.

    Results:

    Median tracing delay decreased from 7 to 3.1 days and the percentage of the known infection source increased from 34–54.8% (incident rate ratio-IRR 1.61 1.40–1.86). Implementation of prompt contact tracing was associated with a 10% decrease in the number of secondary cases (excess relative risk –0.1 95% CI –0.35–0.15). Knowing the source of infection of the index case led to a decrease in secondary transmission (IRR 0.75 95% CI 0.63–0.91) while the decrease in tracing delay was associated with decreased risk of secondary cases (1/IRR 0.97 95% CI 0.94–1.01 per one day of delay). The direct effect of the intervention accounted for the 29% decrease in the number of secondary cases (excess relative risk –0.29 95%–0.61 to 0.03).

    Conclusions:

    Prompt contact testing in the community reduces the time of contact tracing and increases the ability to identify the source of infection in school outbreaks. Although there are strong reasons for thinking it is a causal link, observed differences can be also due to differences in the force of infection and to other control measures put in place.

    Funding:

    This project was carried out with the technical and financial support of the Italian Ministry of Health – CCM 2020 and Ricerca Corrente Annual Program 2023.

    1. Epidemiology and Global Health
    David Robert Grimes
    Research Advance Updated

    In biomedical science, it is a reality that many published results do not withstand deeper investigation, and there is growing concern over a replicability crisis in science. Recently, Ellipse of Insignificance (EOI) analysis was introduced as a tool to allow researchers to gauge the robustness of reported results in dichotomous outcome design trials, giving precise deterministic values for the degree of miscoding between events and non-events tolerable simultaneously in both control and experimental arms (Grimes, 2022). While this is useful for situations where potential miscoding might transpire, it does not account for situations where apparently significant findings might result from accidental or deliberate data redaction in either the control or experimental arms of an experiment, or from missing data or systematic redaction. To address these scenarios, we introduce Region of Attainable Redaction (ROAR), a tool that extends EOI analysis to account for situations of potential data redaction. This produces a bounded cubic curve rather than an ellipse, and we outline how this can be used to identify potential redaction through an approach analogous to EOI. Applications are illustrated, and source code, including a web-based implementation that performs EOI and ROAR analysis in tandem for dichotomous outcome trials is provided.