1. Cell Biology
  2. Plant Biology
Download icon

SABRE populates ER domains essential for cell plate maturation and cell expansion influencing cell and tissue patterning

  1. Xiaohang Cheng
  2. Magdalena Bezanilla  Is a corresponding author
  1. Dartmouth College, United States
Research Article
  • Cited 5
  • Views 1,176
  • Annotations
Cite this article as: eLife 2021;10:e65166 doi: 10.7554/eLife.65166


SABRE, which is found throughout eukaryotes and was originally identified in plants, mediates cell expansion, division plane orientation and planar polarity in plants. How and where SABRE mediates these processes remain open questions. We deleted SABRE in Physcomitrium patens, an excellent model for cell biology. SABRE null mutants were stunted, similar to phenotypes in seed plants. Additionally, polarized growing cells were delayed in cytokinesis, sometimes resulting in catastrophic failures. A functional SABRE fluorescent fusion protein localized to dynamic puncta on regions of the ER during interphase and at the cell plate during cell division. Without SABRE, cells accumulated ER aggregates and the ER abnormally buckled along the developing cell plate. Notably, callose deposition was delayed in Δsabre, and in cells that failed to divide, abnormal callose accumulations formed at the cell plate. Our findings revealed a surprising and fundamental role for the ER in cell plate maturation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Xiaohang Cheng

    Department of Biological Sciences, Dartmouth College, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Magdalena Bezanilla

    Department of Biological Sciences, Dartmouth College, Hanover, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6124-9916


National Science Foundation (MCB-1715785)

  • Magdalena Bezanilla

Dartmouth College (John H. Copenhaver Jr. and William H. Thomas MD 1952 Award)

  • Xiaohang Cheng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dominique C Bergmann, Stanford University, United States

Publication history

  1. Received: November 25, 2020
  2. Accepted: March 4, 2021
  3. Accepted Manuscript published: March 9, 2021 (version 1)
  4. Version of Record published: March 23, 2021 (version 2)


© 2021, Cheng & Bezanilla

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,176
    Page views
  • 146
  • 5

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Paul M Wassarman, Eveline S Litscher
    Review Article

    Fertility in female mammals, including mice and humans, is dependent on the presence of a zona pellucida (ZP) around growing oocytes and unfertilized eggs. A ZP is required to stabilize contacts between oocyte microvilli and follicle cell projections that traverse the ZP to form gap junctions that support the health of growing oocytes and developing follicles. In the absence of a ZP, due to inactivation or mutation of genes encoding ZP proteins, there is a loss of contacts between growing oocytes and neighboring follicle cells and a concomitant reduction in the production of ovulated eggs that results in female infertility.

    1. Cell Biology
    2. Neuroscience
    Sergio Velasco-Aviles et al.
    Research Article

    The class IIa histone deacetylases (HDACs) have pivotal roles in the development of different tissues. Of this family, Schwann cells express Hdac4, 5 and 7 but not Hdac9. Here we show that a transcription factor regulated genetic compensatory mechanism within this family of proteins, blocks negative regulators of myelination ensuring peripheral nerve developmental myelination and remyelination after injury. Thus, when Hdac4 and 5 are knocked-out from Schwann cells in mice, a JUN-dependent mechanism induces the compensatory overexpression of Hdac7 permitting, although with a delay, the formation of the myelin sheath. When Hdac4,5 and 7 are simultaneously removed, the Myocyte-specific enhancer-factor d (MEF2D) binds to the promoter and induces the de novo expression of Hdac9, and although several melanocytic lineage genes are misexpressed and Remak bundle structure is disrupted, myelination proceeds after a long delay. Thus, our data unveil a finely tuned compensatory mechanism within the class IIa Hdac family, coordinated by distinct transcription factors, that guarantees the ability of Schwann cells to myelinate during development and remyelinate after nerve injury.