Transcription-associated topoisomerase 2α activity is a major effector of cytotoxicity induced by G-quadruplex ligands

  1. Madeleine Bossaert
  2. Angélique Pipier
  3. Jean-Francois Riou
  4. Céline Noirot
  5. Linh-Trang Nguyễn
  6. Remy-Felix Serre
  7. Olivier Bouchez
  8. Eric Defrancq
  9. Patrick Calsou
  10. Sébastien Britton
  11. Dennis Gomez  Is a corresponding author
  1. Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France, France
  2. Muséum National d'Histoire Naturelle, CNRS, INSERM, France
  3. INRAE, UR 875, Genotoul Bioinfo, Castanet-Tolosan, France, France
  4. INRAE, US 1426, Castanet-Tolosan, France, France
  5. UMR CNRS 5250, Université Grenoble Alpes, Grenoble 38058, France, France

Abstract

G-quadruplexes (G4) are non-canonical DNA structures found in the genome of most species including human. Small molecules stabilizing these structures, called G4 ligands, have been identified and, for some of them, shown to induce cytotoxic DNA double-strand breaks. Through the use of an unbiased genetic approach, we identify here topoisomerase 2-alpha (TOP2A) as a major effector of cytotoxicity induced by two clastogenic G4 ligands, pyridostatin and CX-5461, the latter molecule currently undergoing phase I/II clinical trials in oncology. We show that both TOP2 activity and transcription account for DNA break production following G4 ligand treatments. In contrast, clastogenic activity of these G4 ligands is countered by topoisomerase 1 (TOP1), which limits co-transcriptional G4 formation, and by factors promoting transcriptional elongation. Altogether our results support that clastogenic G4 ligands act as DNA structure-driven TOP2-poisons at transcribed regions bearing G4 structures.

Data availability

RNA-seq data from wild-type HAP1 and CXR clones have been deposited on SRA with the project ID PRJNA637883

The following data sets were generated

Article and author information

Author details

  1. Madeleine Bossaert

    Cancer, Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Angélique Pipier

    Cancer, Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8481-2860
  3. Jean-Francois Riou

    Muséum National d'Histoire Naturelle, CNRS, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0055-6506
  4. Céline Noirot

    Unité de Mathématique et Informatique Appliquées, INRAE, UR 875, Genotoul Bioinfo, Castanet-Tolosan, France, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Linh-Trang Nguyễn

    Cancer, Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Remy-Felix Serre

    GeT-PlaGe, Genotoul, INRAE, US 1426, Castanet-Tolosan, France, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Olivier Bouchez

    GeT-PlaGe, Genotoul,, INRAE, US 1426, Castanet-Tolosan, France, Castanet-Tolosan, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Eric Defrancq

    Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, Grenoble 38058, France, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Patrick Calsou

    Cancer, Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Sébastien Britton

    Cancer, Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7008-5316
  11. Dennis Gomez

    Cancer, Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France, Toulouse, France
    For correspondence
    dennis.gomez@ipbs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9942-1451

Funding

Agence Nationale de la Recherche (ANR-17-CE18-0002-01)

  • Madeleine Bossaert
  • Angélique Pipier
  • Linh-Trang Nguyễn
  • Patrick Calsou
  • Sébastien Britton
  • Dennis Gomez

Agence Nationale de la Recherche (ANR-16-CE11-0006-01)

  • Angélique Pipier
  • Jean-Francois Riou
  • Eric Defrancq
  • Patrick Calsou
  • Sébastien Britton
  • Dennis Gomez

CANCEROPOLE GSO (Emergence funding CX-Break"")

  • Madeleine Bossaert
  • Angélique Pipier
  • Linh-Trang Nguyễn
  • Patrick Calsou
  • Sébastien Britton
  • Dennis Gomez

Ligue Contre le Cancer (Equipe Labellisée 2018)

  • Madeleine Bossaert
  • Angélique Pipier
  • Linh-Trang Nguyễn
  • Patrick Calsou
  • Sébastien Britton
  • Dennis Gomez

Agence Nationale de la Recherche (ANR-10-INBS-09)

  • Céline Noirot
  • Remy-Felix Serre
  • Olivier Bouchez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Bossaert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,568
    views
  • 624
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Madeleine Bossaert
  2. Angélique Pipier
  3. Jean-Francois Riou
  4. Céline Noirot
  5. Linh-Trang Nguyễn
  6. Remy-Felix Serre
  7. Olivier Bouchez
  8. Eric Defrancq
  9. Patrick Calsou
  10. Sébastien Britton
  11. Dennis Gomez
(2021)
Transcription-associated topoisomerase 2α activity is a major effector of cytotoxicity induced by G-quadruplex ligands
eLife 10:e65184.
https://doi.org/10.7554/eLife.65184

Share this article

https://doi.org/10.7554/eLife.65184

Further reading

    1. Cancer Biology
    2. Cell Biology
    Maojin Tian, Le Yang ... Peiqing Zhao
    Research Article

    TIPE (TNFAIP8) has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma. We found that TIPE-induced PKM2 dimerization, thereby facilitating its translocation from the cytoplasm to the nucleus. TIPE-mediated PKM2 dimerization consequently promoted HIF-1α activation and glycolysis, which contributed to melanoma progression and increased its stemness features. Notably, TIPE specifically phosphorylated PKM2 at Ser 37 in an extracellular signal-regulated kinase (ERK)-dependent manner. Consistently, the expression of TIPE was positively correlated with the levels of PKM2 Ser37 phosphorylation and cancer stem cell (CSC) markers in melanoma tissues from clinical samples and tumor bearing mice. In summary, our findings indicate that the TIPE/PKM2/HIF-1α signaling pathway plays a pivotal role in promoting CSC properties by facilitating the glycolysis, which would provide a promising therapeutic target for melanoma intervention.

    1. Cancer Biology
    Yiwei Huang, Gujie Wu ... Cheng Zhan
    Research Article

    Chemotherapy is widely used to treat lung adenocarcinoma (LUAD) patients comprehensively. Considering the limitations of chemotherapy due to drug resistance and other issues, it is crucial to explore the impact of chemotherapy and immunotherapy on these aspects. In this study, tumor samples from nine LUAD patients, of which four only received surgery and five received neoadjuvant chemotherapy, were subjected to scRNA-seq analysis. In vitro and in vivo assays, including flow cytometry, immunofluorescence, Seahorse assay, and tumor xenograft models, were carried out to validate our findings. A total of 83,622 cells were enrolled for subsequent analyses. The composition of cell types exhibited high heterogeneity across different groups. Functional enrichment analysis revealed that chemotherapy drove significant metabolic reprogramming in tumor cells and macrophages. We identified two subtypes of macrophages: Anti-mac cells (CD45+CD11b+CD86+) and Pro-mac cells (CD45+CD11b+ARG +) and sorted them by flow cytometry. The proportion of Pro-mac cells in LUAD tissues increased significantly after neoadjuvant chemotherapy. Pro-mac cells promote tumor growth and angiogenesis and also suppress tumor immunity. Moreover, by analyzing the remodeling of T and B cells induced by neoadjuvant therapy, we noted that chemotherapy ignited a relatively more robust immune cytotoxic response toward tumor cells. Our study demonstrates that chemotherapy induces metabolic reprogramming within the tumor microenvironment of LUAD, particularly affecting the function and composition of immune cells such as macrophages and T cells. We believe our findings will offer insight into the mechanisms of drug resistance and provide novel therapeutic targets for LUAD in the future.