Neuropeptide ACP facilitates lipid oxidation and utilization during long-term flight in locusts
Abstract
Long-term flight depends heavily on intensive energy metabolism in animals; however, the neuroendocrine mechanisms underlying efficient substrate utilization remain elusive. Here, we report that the adipokinetic hormone/corazonin-related peptide (ACP) can facilitate muscle lipid utilization in a famous long-term migratory flighting species, Locusta migratoria. By peptidomic analysis and RNAi screening, we identified brain-derived ACP as a key flight-related neuropeptide. ACP gene expression increased notably upon sustained flight. CRISPR/Cas9-mediated knockout of ACP gene and ACP receptor gene (ACPR) significantly abated prolonged flight of locusts. Transcriptomic and metabolomic analyses further revealed that genes and metabolites involved in fatty acid transport and oxidation were notably downregulated in the flight muscle of ACP mutants. Finally, we demonstrated that a fatty acid-binding protein (FABP) mediated the effects of ACP in regulating muscle lipid metabolism during long-term flight in locusts. Our results elucidated a previously undescribed neuroendocrine mechanism underlying efficient energy utilization associated with long-term flight.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3, 4, 5, and 6.
-
RNA-Seq of fat body and muscle tissues in ACP mutant locustsNational Genomics Data Center, Beijing Institute of Genomics.
Article and author information
Author details
Funding
National Natural Science Foundation of China (Grant NO. 31930012)
- Xianhui Wang
National Natural Science Foundation of China (Grant NO. 32070497)
- Li Hou
Chinese Academy of Sciences (nos. 152111KYSB20180036)
- Le Kang
Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2021079)
- Li Hou
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Hou et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.