BUB-1 targets PP2A:B56 to regulates chromosome congression during meiosis I in C. elegans oocytes

  1. Laura Bel Borja
  2. Flavie Soubigou
  3. Samuel JP Taylor
  4. Conchita Fraguas Bringas
  5. Jacqueline Budrewicz
  6. Pablo Lara-Gonzalez
  7. Christopher G Sorensen Turpin
  8. Joshua N Bembenek
  9. Dhanya K Cheerambathur
  10. Federico Pelisch  Is a corresponding author
  1. University of Dundee, United Kingdom
  2. Ludwig Institute for Cancer Research, United States
  3. University of Tennessee, United States
  4. University of Michigan, United States
  5. University of Edinburgh, United Kingdom

Abstract

Protein Phosphatase 2A (PP2A) is a heterotrimer composed of scaffolding (A), catalytic (C), and regulatory (B) subunits. PP2A complexes with B56 subunits are targeted by Shugoshin and BUBR1 to protect centromeric cohesion and stabilise kinetochore-microtubule attachments in yeast and mouse meiosis. In C. elegans the closest BUBR1 ortholog lacks the B56-interaction domain and Shugoshin is not required for meiotic segregation. Therefore, the role of PP2A in C. elegans female meiosis is unknown. We report that PP2A is essential for meiotic spindle assembly and chromosome dynamics during C. elegans female meiosis. BUB-1 is the main chromosome-targeting factor for B56 subunits during prometaphase I. BUB-1 recruits PP2A:B56 to the chromosomes via a newly identified LxxIxE motif in a phosphorylation-dependent manner and this recruitment is important for proper chromosome congression. Our results highlight a novel mechanism for B56 recruitment, essential for recruiting a pool of PP2A involved in chromosome congression during meiosis I.

Data availability

While some time points are shown in the figures, representative movies showing all time points are provided as Supplementary Movies. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset identifier PXD023258.

Article and author information

Author details

  1. Laura Bel Borja

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8381-934X
  2. Flavie Soubigou

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Samuel JP Taylor

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Conchita Fraguas Bringas

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9594-5856
  5. Jacqueline Budrewicz

    Ludwig Institute for Cancer Research, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Pablo Lara-Gonzalez

    Ludwig Institute for Cancer Research, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Christopher G Sorensen Turpin

    Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Joshua N Bembenek

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Dhanya K Cheerambathur

    Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Federico Pelisch

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    For correspondence
    f.pelisch@dundee.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4575-1492

Funding

Medical Research Council (MR/R008574/1)

  • Laura Bel Borja
  • Flavie Soubigou
  • Federico Pelisch

The Wellcome (208833)

  • Dhanya K Cheerambathur

NIH Office of the Director (R01 GM074215)

  • Jacqueline Budrewicz
  • Pablo Lara-Gonzalez

NIH Office of the Director (R01 GM114471)

  • Christopher G Sorensen Turpin
  • Joshua N Bembenek

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Bel Borja et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,047
    views
  • 314
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Bel Borja
  2. Flavie Soubigou
  3. Samuel JP Taylor
  4. Conchita Fraguas Bringas
  5. Jacqueline Budrewicz
  6. Pablo Lara-Gonzalez
  7. Christopher G Sorensen Turpin
  8. Joshua N Bembenek
  9. Dhanya K Cheerambathur
  10. Federico Pelisch
(2020)
BUB-1 targets PP2A:B56 to regulates chromosome congression during meiosis I in C. elegans oocytes
eLife 9:e65307.
https://doi.org/10.7554/eLife.65307

Share this article

https://doi.org/10.7554/eLife.65307

Further reading

    1. Cell Biology
    Xue Yang, Chuyi Han ... Fanyuan Yu
    Research Article

    Platelet-derived growth factor receptor alpha (PDGFR-α) activity is crucial in the process of dental and periodontal mesenchyme regeneration facilitated by autologous platelet concentrates (APCs), such as platelet-rich fibrin (PRF), platelet-rich plasma (PRP) and concentrated growth factors (CGF), as well as by recombinant PDGF drugs. However, it is largely unclear about the physiological patterns and cellular fate determinations of PDGFR-α+ cells in the homeostasis maintaining of adult dental and periodontal mesenchyme. We previously identified NFATc1 expressing PDGFR-α+ cells as a subtype of skeletal stem cells (SSCs) in limb bone in mice, but their roles in dental and periodontal remain unexplored. To this end, in the present study we investigated the spatiotemporal atlas of NFATc1+ and PDGFR-α+ cells residing in dental and periodontal mesenchyme in mice, their capacity for progeny cell generation, and their inclusive, exclusive and hierarchical relations in homeostasis. We utilized CRISPR/Cas9-mediated gene editing to generate two dual recombination systems, which were Cre-loxP and Dre-rox combined intersectional and exclusive reporters respectively, to concurrently demonstrate the inclusive, exclusive, and hierarchical distributions of NFATc1+ and PDGFR-α+ cells and their lineage commitment. By employing the state-of-the-art transgenic lineage tracing techniques in cooperating with tissue clearing-based advanced imaging and three-dimensional slices reconstruction, we systematically mapped the distribution atlas of NFATc1+ and PDGFR-α+ cells in dental and periodontal mesenchyme and tracked their in vivo fate trajectories in mice. Our findings extend current understanding of NFATc1+ and PDGFR-α+ cells in dental and periodontal mesenchyme homeostasis, and furthermore enhance our comprehension of their sustained therapeutic impact for future clinical investigations.

    1. Cell Biology
    2. Neuroscience
    Josse Poppinga, Nolan J Barrett ... Jan RT van Weering
    Research Article

    Sorting nexin 4 (SNX4) is an evolutionary conserved organizer of membrane recycling. In neurons, SNX4 accumulates in synapses, but how SNX4 affects synapse function remains unknown. We generated a conditional SNX4 knock-out mouse model and report that SNX4 cKO synapses show enhanced neurotransmission during train stimulation, while the first evoked EPSC was normal. SNX4 depletion did not affect vesicle recycling, basic autophagic flux, or the levels and localization of SNARE-protein VAMP2/synaptobrevin-2. However, SNX4 depletion affected synapse ultrastructure: an increase in docked synaptic vesicles at the active zone, while the overall vesicle number was normal, and a decreased active zone length. These effects together lead to a substantially increased density of docked vesicles per release site. In conclusion, SNX4 is a negative regulator of synaptic vesicle docking and release. These findings suggest a role for SNX4 in synaptic vesicle recruitment at the active zone.