BUB-1 targets PP2A:B56 to regulates chromosome congression during meiosis I in C. elegans oocytes

  1. Laura Bel Borja
  2. Flavie Soubigou
  3. Samuel JP Taylor
  4. Conchita Fraguas Bringas
  5. Jacqueline Budrewicz
  6. Pablo Lara-Gonzalez
  7. Christopher G Sorensen Turpin
  8. Joshua N Bembenek
  9. Dhanya K Cheerambathur
  10. Federico Pelisch  Is a corresponding author
  1. University of Dundee, United Kingdom
  2. Ludwig Institute for Cancer Research, United States
  3. University of Tennessee, United States
  4. University of Michigan, United States
  5. University of Edinburgh, United Kingdom

Abstract

Protein Phosphatase 2A (PP2A) is a heterotrimer composed of scaffolding (A), catalytic (C), and regulatory (B) subunits. PP2A complexes with B56 subunits are targeted by Shugoshin and BUBR1 to protect centromeric cohesion and stabilise kinetochore-microtubule attachments in yeast and mouse meiosis. In C. elegans the closest BUBR1 ortholog lacks the B56-interaction domain and Shugoshin is not required for meiotic segregation. Therefore, the role of PP2A in C. elegans female meiosis is unknown. We report that PP2A is essential for meiotic spindle assembly and chromosome dynamics during C. elegans female meiosis. BUB-1 is the main chromosome-targeting factor for B56 subunits during prometaphase I. BUB-1 recruits PP2A:B56 to the chromosomes via a newly identified LxxIxE motif in a phosphorylation-dependent manner and this recruitment is important for proper chromosome congression. Our results highlight a novel mechanism for B56 recruitment, essential for recruiting a pool of PP2A involved in chromosome congression during meiosis I.

Data availability

While some time points are shown in the figures, representative movies showing all time points are provided as Supplementary Movies. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset identifier PXD023258.

Article and author information

Author details

  1. Laura Bel Borja

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8381-934X
  2. Flavie Soubigou

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Samuel JP Taylor

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Conchita Fraguas Bringas

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9594-5856
  5. Jacqueline Budrewicz

    Ludwig Institute for Cancer Research, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Pablo Lara-Gonzalez

    Ludwig Institute for Cancer Research, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Christopher G Sorensen Turpin

    Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Joshua N Bembenek

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Dhanya K Cheerambathur

    Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Federico Pelisch

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    For correspondence
    f.pelisch@dundee.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4575-1492

Funding

Medical Research Council (MR/R008574/1)

  • Laura Bel Borja
  • Flavie Soubigou
  • Federico Pelisch

The Wellcome (208833)

  • Dhanya K Cheerambathur

NIH Office of the Director (R01 GM074215)

  • Jacqueline Budrewicz
  • Pablo Lara-Gonzalez

NIH Office of the Director (R01 GM114471)

  • Christopher G Sorensen Turpin
  • Joshua N Bembenek

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Bel Borja et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,972
    views
  • 307
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Bel Borja
  2. Flavie Soubigou
  3. Samuel JP Taylor
  4. Conchita Fraguas Bringas
  5. Jacqueline Budrewicz
  6. Pablo Lara-Gonzalez
  7. Christopher G Sorensen Turpin
  8. Joshua N Bembenek
  9. Dhanya K Cheerambathur
  10. Federico Pelisch
(2020)
BUB-1 targets PP2A:B56 to regulates chromosome congression during meiosis I in C. elegans oocytes
eLife 9:e65307.
https://doi.org/10.7554/eLife.65307

Share this article

https://doi.org/10.7554/eLife.65307

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sarah Rubin, Ankit Agrawal ... Elazar Zelzer
    Research Article

    Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.

    1. Cell Biology
    2. Immunology and Inflammation
    Daniel M Williams, Andrew A Peden
    Research Article

    NLRP3 is an inflammasome seeding pattern recognition receptor activated in response to multiple danger signals which perturb intracellular homeostasis. Electrostatic interactions between the NLRP3 polybasic (PB) region and negatively charged lipids on the trans-Golgi network (TGN) have been proposed to recruit NLRP3 to the TGN. In this study, we demonstrate that membrane association of NLRP3 is critically dependant on S-acylation of a highly conserved cysteine residue (Cys-130), which traps NLRP3 in a dynamic S-acylation cycle at the Golgi, and a series of hydrophobic residues preceding Cys-130 which act in conjunction with the PB region to facilitate Cys-130 dependent Golgi enrichment. Due to segregation from Golgi localised thioesterase enzymes caused by a nigericin induced breakdown in Golgi organisation and function, NLRP3 becomes immobilised on the Golgi through reduced de-acylation of its Cys-130 lipid anchor, suggesting that disruptions in Golgi homeostasis are conveyed to NLRP3 through its acylation state. Thus, our work defines a nigericin sensitive S-acylation cycle that gates access of NLRP3 to the Golgi.