BUB-1 targets PP2A:B56 to regulate chromosome congression during meiosis I in C. elegans oocytes

  1. Laura Bel Borja
  2. Flavie Soubigou
  3. Samuel JP Taylor
  4. Conchita Fraguas Bringas
  5. Jacqueline Budrewicz
  6. Pablo Lara-Gonzalez
  7. Christopher G Sorensen Turpin
  8. Joshua N Bembenek
  9. Dhanya K Cheerambathur
  10. Federico Pelisch  Is a corresponding author
  1. University of Dundee, United Kingdom
  2. Ludwig Institute for Cancer Research, United States
  3. University of Tennessee, United States
  4. University of Michigan, United States
  5. University of Edinburgh, United Kingdom

Abstract

Protein Phosphatase 2A (PP2A) is a heterotrimer composed of scaffolding (A), catalytic (C), and regulatory (B) subunits. PP2A complexes with B56 subunits are targeted by Shugoshin and BUBR1 to protect centromeric cohesion and stabilise kinetochore-microtubule attachments in yeast and mouse meiosis. In C. elegans the closest BUBR1 ortholog lacks the B56-interaction domain and Shugoshin is not required for meiotic segregation. Therefore, the role of PP2A in C. elegans female meiosis is unknown. We report that PP2A is essential for meiotic spindle assembly and chromosome dynamics during C. elegans female meiosis. BUB-1 is the main chromosome-targeting factor for B56 subunits during prometaphase I. BUB-1 recruits PP2A:B56 to the chromosomes via a newly identified LxxIxE motif in a phosphorylation-dependent manner and this recruitment is important for proper chromosome congression. Our results highlight a novel mechanism for B56 recruitment, essential for recruiting a pool of PP2A involved in chromosome congression during meiosis I.

Data availability

While some time points are shown in the figures, representative movies showing all time points are provided as Supplementary Movies. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset identifier PXD023258.

Article and author information

Author details

  1. Laura Bel Borja

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8381-934X
  2. Flavie Soubigou

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Samuel JP Taylor

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Conchita Fraguas Bringas

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9594-5856
  5. Jacqueline Budrewicz

    Ludwig Institute for Cancer Research, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Pablo Lara-Gonzalez

    Ludwig Institute for Cancer Research, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Christopher G Sorensen Turpin

    Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Joshua N Bembenek

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Dhanya K Cheerambathur

    Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Federico Pelisch

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    For correspondence
    f.pelisch@dundee.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4575-1492

Funding

Medical Research Council (MR/R008574/1)

  • Laura Bel Borja
  • Flavie Soubigou
  • Federico Pelisch

The Wellcome (208833)

  • Dhanya K Cheerambathur

NIH Office of the Director (R01 GM074215)

  • Jacqueline Budrewicz
  • Pablo Lara-Gonzalez

NIH Office of the Director (R01 GM114471)

  • Christopher G Sorensen Turpin
  • Joshua N Bembenek

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Bel Borja et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,030
    views
  • 312
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Bel Borja
  2. Flavie Soubigou
  3. Samuel JP Taylor
  4. Conchita Fraguas Bringas
  5. Jacqueline Budrewicz
  6. Pablo Lara-Gonzalez
  7. Christopher G Sorensen Turpin
  8. Joshua N Bembenek
  9. Dhanya K Cheerambathur
  10. Federico Pelisch
(2020)
BUB-1 targets PP2A:B56 to regulate chromosome congression during meiosis I in C. elegans oocytes
eLife 9:e65307.
https://doi.org/10.7554/eLife.65307

Share this article

https://doi.org/10.7554/eLife.65307

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.