1. Cell Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Spatiotemporal dynamics of PIEZO1 localization controls keratinocyte migration during wound healing

  1. Jesse R Holt
  2. Wei-Zheng Zeng
  3. Elizabeth L Evans
  4. Seung-Hyun Woo
  5. Shang Ma
  6. Hamid Abuwarda
  7. Meaghan Loud
  8. Ardem Patapoutian  Is a corresponding author
  9. Medha M Pathak  Is a corresponding author
  1. University of California, Irvine, United States
  2. The Scripps Research Institute, United States
Research Article
  • Cited 0
  • Views 935
  • Annotations
Cite this article as: eLife 2021;10:e65415 doi: 10.7554/eLife.65415

Abstract

Keratinocytes, the predominant cell type of the epidermis, migrate to reinstate the epithelial barrier during wound healing. Mechanical cues are known to regulate keratinocyte re-epithelialization and wound healing however, the underlying molecular transducers and biophysical mechanisms remain elusive. Here, we show through molecular, cellular and organismal studies that the mechanically-activated ion channel PIEZO1 regulates keratinocyte migration and wound healing. Epidermal-specific Piezo1 knockout mice exhibited faster wound closure while gain-of-function mice displayed slower wound closure compared to littermate controls. By imaging the spatiotemporal localization dynamics of endogenous PIEZO1 channels we find that channel enrichment at some regions of the wound edge induces a localized cellular retraction that slows keratinocyte collective migration. In migrating single keratinocytes, PIEZO1 is enriched at the rear of the cell, where maximal retraction occurs, and we find that chemical activation of PIEZO1 enhances retraction during single as well as collective migration. Our findings uncover novel molecular mechanisms underlying single and collective keratinocyte migration that may suggest a potential pharmacological target for wound treatment. More broadly, we show that nanoscale spatiotemporal dynamics of Piezo1 channels can control tissue-scale events, a finding with implications beyond wound healing to processes as diverse as development, homeostasis, disease and repair.

Data availability

The datasets for graphs included in each figure have been made available as source data files.

Article and author information

Author details

  1. Jesse R Holt

    Physiology & Biophysics, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Wei-Zheng Zeng

    Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elizabeth L Evans

    Physiology & Biophysics, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Seung-Hyun Woo

    Howard Hughes Medical Institute, Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shang Ma

    Howard Hughes Medical Institute, Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hamid Abuwarda

    Physiology & Biophysics, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Meaghan Loud

    Howard Hughes Medical Institute, Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ardem Patapoutian

    Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
    For correspondence
    ardem@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0726-7034
  9. Medha M Pathak

    Physiology & Biophysics, University of California, Irvine, Irvine, United States
    For correspondence
    medhap@uci.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6518-3085

Funding

National Institutes of Health (DP2AT010376)

  • Medha M Pathak

National Institutes of Health (R01NS109810)

  • Medha M Pathak

National Institutes of Health (R01HL143297)

  • Ardem Patapoutian

Howard Hughes Medical Institute (GT11549)

  • Jesse R Holt
  • Medha M Pathak

George Hewitt Foundation for Medical Research

  • Wei-Zheng Zeng

National Science Foundation (DMS1763272)

  • Jesse R Holt
  • Wei-Zheng Zeng

Simons Foundation (594598)

  • Jesse R Holt
  • Wei-Zheng Zeng

Howard Hughes Medical Institute

  • Ardem Patapoutian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All studies were approved by the Institutional Animal Care and Use Committee of Uni-versity of California at Irvine (protocol number AUP-19-184) and The Scripps Research Institute (protocol number 08-0136-4), as appropriate, and performed in accordance with their guidelines.

Reviewing Editor

  1. David D Ginty, Harvard Medical School, United States

Publication history

  1. Received: December 3, 2020
  2. Accepted: September 24, 2021
  3. Accepted Manuscript published: September 27, 2021 (version 1)

Copyright

© 2021, Holt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 935
    Page views
  • 262
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Vinay V Eapen et al.
    Research Article Updated

    Removal of damaged organelles via the process of selective autophagy constitutes a major form of cellular quality control. Damaged organelles are recognized by a dedicated surveillance machinery, leading to the assembly of an autophagosome around the damaged organelle, prior to fusion with the degradative lysosomal compartment. Lysosomes themselves are also prone to damage and are degraded through the process of lysophagy. While early steps involve recognition of ruptured lysosomal membranes by glycan-binding galectins and ubiquitylation of transmembrane lysosomal proteins, many steps in the process, and their interrelationships, remain poorly understood, including the role and identity of cargo receptors required for completion of lysophagy. Here, we employ quantitative organelle capture and proximity biotinylation proteomics of autophagy adaptors, cargo receptors, and galectins in response to acute lysosomal damage, thereby revealing the landscape of lysosome-associated proteome remodeling during lysophagy. Among the proteins dynamically recruited to damaged lysosomes were ubiquitin-binding autophagic cargo receptors. Using newly developed lysophagic flux reporters including Lyso-Keima, we demonstrate that TAX1BP1, together with its associated kinase TBK1, are both necessary and sufficient to promote lysophagic flux in both HeLa cells and induced neurons (iNeurons). While the related receptor Optineurin (OPTN) can drive damage-dependent lysophagy when overexpressed, cells lacking either OPTN or CALCOCO2 still maintain significant lysophagic flux in HeLa cells. Mechanistically, TAX1BP1-driven lysophagy requires its N-terminal SKICH domain, which binds both TBK1 and the autophagy regulatory factor RB1CC1, and requires upstream ubiquitylation events for efficient recruitment and lysophagic flux. These results identify TAX1BP1 as a central component in the lysophagy pathway and provide a proteomic resource for future studies of the lysophagy process.

    1. Cell Biology
    2. Neuroscience
    Shahzad S Khan et al.
    Research Advance

    Activating LRRK2 mutations cause Parkinson's disease, and pathogenic LRRK2 kinase interferes with ciliogenesis. Previously, we showed that cholinergic interneurons of the dorsal striatum lose their cilia in R1441C LRRK2 mutant mice (Dhekne et al., 2018). Here, we show that cilia loss is seen as early as 10 weeks of age in these mice and also in two other mouse strains carrying the most common human G2019S LRRK2 mutation. Loss of the PPM1H phosphatase that is specific for LRRK2-phosphorylated Rab GTPases yields the same cilia loss phenotype seen in mice expressing pathogenic LRRK2 kinase, strongly supporting a connection between Rab GTPase phosphorylation and cilia loss. Moreover, astrocytes throughout the striatum show a ciliation defect in all LRRK2 and PPM1H mutant models examined. Hedgehog signaling requires cilia, and loss of cilia in LRRK2 mutant rodents correlates with dysregulation of Hedgehog signaling as monitored by in situ hybridization of Gli1 and Gdnf transcripts. Dopaminergic neurons of the substantia nigra secrete a Hedgehog signal that is sensed in the striatum to trigger neuroprotection; our data support a model in which LRRK2 and PPM1H mutant mice show altered responses to critical Hedgehog signals in the nigrostriatal pathway.