Association of human breast cancer CD44-/CD24- cells with delayed distant metastasis

  1. Xinbo Qiao
  2. Yixiao Zhang
  3. Lisha Sun
  4. Qingtian Ma
  5. Jie Yang
  6. Liping Ai
  7. Jinqi Xue
  8. Guanglei Chen
  9. Hao Zhang
  10. Ce Ji
  11. Xi Gu
  12. Haixin Lei
  13. Yongliang Yang
  14. Caigang Liu  Is a corresponding author
  1. Shengjing Hospital of China Medical University, China
  2. Shengjing hospital of China Medical University, China
  3. Tongji Medical College, China
  4. Xijing Hospital of Fourth Military Medical University, China
  5. Cancer Hospital of China Medical University, China
  6. Cancer Center of Dalian Medical University, China
  7. Dalian University of Technology, China

Abstract

Tumor metastasis remains the main cause of breast cancer-related deaths, especially delayed breast cancer distant metastasis. The current study assessed the frequency of CD44-/CD24- breast cancer cells in 576 tissue specimens for associations with clinicopathological features and metastasis and investigated the underlying molecular mechanisms. The results indicated that higher frequency (≥19.5%) of CD44-/CD24- cells was associated with delayed postoperative breast cancer metastasis. Furthermore, CD44-/CD24- triple negative breast cancer (TNBC) cells spontaneously converted into CD44+/CD24- cancer stem cells (CSCs) with properties similar to CD44+/CD24- CSCs from primary human breast cancer cells and parental TNBC cells in terms of stemness marker expression, self-renewal, differentiation, tumorigenicity and lung metastasis in vitro and in NOD/SCID mice. RNA sequencing identified several differentially expressed genes (DEGs) in newly converted CSCs and RHBDL2, one of the DEGs, expression was up-regulated. More importantly, RHBDL2 silencing inhibited the YAP1/USP31/NF-κB signaling and attenuated spontaneous CD44-/CD24- cell conversion into CSCs and their mammosphere formation. These findings suggest that the frequency of CD44-/CD24- tumor cells and RHBDL2 may be valuable for prognosis of delayed breast cancer metastasis, particularly for TNBC.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Xinbo Qiao

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  2. Yixiao Zhang

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  3. Lisha Sun

    Department of Oncology, Cancer Stem Cell and Translational Medicine Laboratory, Shengjing hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  4. Qingtian Ma

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  5. Jie Yang

    Tongji Medical College of HUST, Tongji Medical College, Wuhan, China
    Competing interests
    No competing interests declared.
  6. Liping Ai

    Department of Clinical Oncology, Xijing Hospital of Fourth Military Medical University, Xi'an, China
    Competing interests
    No competing interests declared.
  7. Jinqi Xue

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  8. Guanglei Chen

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  9. Hao Zhang

    Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  10. Ce Ji

    Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  11. Xi Gu

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  12. Haixin Lei

    Institute of Cancer Stem Cell, Cancer Center of Dalian Medical University, Dalian, China
    Competing interests
    No competing interests declared.
  13. Yongliang Yang

    Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
    Competing interests
    No competing interests declared.
  14. Caigang Liu

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    For correspondence
    angel-s205@163.com
    Competing interests
    Caigang Liu, Reviewing Editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2083-235X

Funding

Foundation for Innovative Research Groups of the National Natural Science Foundation of China (#81572609)

  • Caigang Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experimental protocol was approved by the Animal Research and Care Committee of China Medical University (Shenyang, China) and followed the Guidelines of the Care and Use of Laboratory Animals issued by the Chinese Council on Animal Research. Female BALB/c nude mice (6 weeks old) were obtained from Human Silaikejingda Laboratory Animals (Changsha, China) and housed in a specific pathogen-free facility with free access to autoclaved food and water. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering. The current study was approved by the Ethics Committee of all three hospital review board review boards ((Project identification code: Project identification code: 2018PS304K, date on 03/05/2018 2018PS304K, date on 03/05/2018))

Copyright

© 2021, Qiao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,405
    views
  • 291
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xinbo Qiao
  2. Yixiao Zhang
  3. Lisha Sun
  4. Qingtian Ma
  5. Jie Yang
  6. Liping Ai
  7. Jinqi Xue
  8. Guanglei Chen
  9. Hao Zhang
  10. Ce Ji
  11. Xi Gu
  12. Haixin Lei
  13. Yongliang Yang
  14. Caigang Liu
(2021)
Association of human breast cancer CD44-/CD24- cells with delayed distant metastasis
eLife 10:e65418.
https://doi.org/10.7554/eLife.65418

Share this article

https://doi.org/10.7554/eLife.65418

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.