Association of human breast cancer CD44-/CD24- cells with delayed distant metastasis

  1. Xinbo Qiao
  2. Yixiao Zhang
  3. Lisha Sun
  4. Qingtian Ma
  5. Jie Yang
  6. Liping Ai
  7. Jinqi Xue
  8. Guanglei Chen
  9. Hao Zhang
  10. Ce Ji
  11. Xi Gu
  12. Haixin Lei
  13. Yongliang Yang
  14. Caigang Liu  Is a corresponding author
  1. Shengjing Hospital of China Medical University, China
  2. Shengjing hospital of China Medical University, China
  3. Tongji Medical College, China
  4. Xijing Hospital of Fourth Military Medical University, China
  5. Cancer Hospital of China Medical University, China
  6. Cancer Center of Dalian Medical University, China
  7. Dalian University of Technology, China

Abstract

Tumor metastasis remains the main cause of breast cancer-related deaths, especially delayed breast cancer distant metastasis. The current study assessed the frequency of CD44-/CD24- breast cancer cells in 576 tissue specimens for associations with clinicopathological features and metastasis and investigated the underlying molecular mechanisms. The results indicated that higher frequency (≥19.5%) of CD44-/CD24- cells was associated with delayed postoperative breast cancer metastasis. Furthermore, CD44-/CD24- triple negative breast cancer (TNBC) cells spontaneously converted into CD44+/CD24- cancer stem cells (CSCs) with properties similar to CD44+/CD24- CSCs from primary human breast cancer cells and parental TNBC cells in terms of stemness marker expression, self-renewal, differentiation, tumorigenicity and lung metastasis in vitro and in NOD/SCID mice. RNA sequencing identified several differentially expressed genes (DEGs) in newly converted CSCs and RHBDL2, one of the DEGs, expression was up-regulated. More importantly, RHBDL2 silencing inhibited the YAP1/USP31/NF-κB signaling and attenuated spontaneous CD44-/CD24- cell conversion into CSCs and their mammosphere formation. These findings suggest that the frequency of CD44-/CD24- tumor cells and RHBDL2 may be valuable for prognosis of delayed breast cancer metastasis, particularly for TNBC.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Xinbo Qiao

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  2. Yixiao Zhang

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  3. Lisha Sun

    Department of Oncology, Cancer Stem Cell and Translational Medicine Laboratory, Shengjing hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  4. Qingtian Ma

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  5. Jie Yang

    Tongji Medical College of HUST, Tongji Medical College, Wuhan, China
    Competing interests
    No competing interests declared.
  6. Liping Ai

    Department of Clinical Oncology, Xijing Hospital of Fourth Military Medical University, Xi'an, China
    Competing interests
    No competing interests declared.
  7. Jinqi Xue

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  8. Guanglei Chen

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  9. Hao Zhang

    Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  10. Ce Ji

    Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  11. Xi Gu

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    Competing interests
    No competing interests declared.
  12. Haixin Lei

    Institute of Cancer Stem Cell, Cancer Center of Dalian Medical University, Dalian, China
    Competing interests
    No competing interests declared.
  13. Yongliang Yang

    Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
    Competing interests
    No competing interests declared.
  14. Caigang Liu

    Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
    For correspondence
    angel-s205@163.com
    Competing interests
    Caigang Liu, Reviewing Editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2083-235X

Funding

Foundation for Innovative Research Groups of the National Natural Science Foundation of China (#81572609)

  • Caigang Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experimental protocol was approved by the Animal Research and Care Committee of China Medical University (Shenyang, China) and followed the Guidelines of the Care and Use of Laboratory Animals issued by the Chinese Council on Animal Research. Female BALB/c nude mice (6 weeks old) were obtained from Human Silaikejingda Laboratory Animals (Changsha, China) and housed in a specific pathogen-free facility with free access to autoclaved food and water. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering. The current study was approved by the Ethics Committee of all three hospital review board review boards ((Project identification code: Project identification code: 2018PS304K, date on 03/05/2018 2018PS304K, date on 03/05/2018))

Reviewing Editor

  1. Renata Pasqualini, Rutgers University, United States

Publication history

  1. Received: December 3, 2020
  2. Accepted: July 25, 2021
  3. Accepted Manuscript published: July 28, 2021 (version 1)
  4. Version of Record published: August 6, 2021 (version 2)

Copyright

© 2021, Qiao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,713
    Page views
  • 216
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xinbo Qiao
  2. Yixiao Zhang
  3. Lisha Sun
  4. Qingtian Ma
  5. Jie Yang
  6. Liping Ai
  7. Jinqi Xue
  8. Guanglei Chen
  9. Hao Zhang
  10. Ce Ji
  11. Xi Gu
  12. Haixin Lei
  13. Yongliang Yang
  14. Caigang Liu
(2021)
Association of human breast cancer CD44-/CD24- cells with delayed distant metastasis
eLife 10:e65418.
https://doi.org/10.7554/eLife.65418

Further reading

    1. Cancer Biology
    David Allard, Isabelle Cousineau ... John Stagg
    Research Article

    CD73 is an ectonucleotidase overexpressed on tumor cells that suppresses anti-tumor immunity. Accordingly, several CD73 inhibitors are currently being evaluated in the clinic, including in large randomized clinical trials. Yet, the tumor cell-intrinsic impact of CD73 remain largely uncharacterized. Using metabolomics, we discovered that CD73 significantly enhances tumor cell mitochondrial respiration and aspartate biosynthesis. Importantly, rescuing aspartate biosynthesis was sufficient to restore proliferation of CD73-deficient tumors in immune deficient mice. Seahorse analysis of a large panel of mouse and human tumor cells demonstrated that CD73 enhanced oxidative phosphorylation (OXPHOS) and glycolytic reserve. Targeting CD73 decreased tumor cell metabolic fitness, increased genomic instability and suppressed poly ADP ribose polymerase (PARP) activity. Our study thus uncovered an important immune-independent function for CD73 in promoting tumor cell metabolism, and provides the rationale for previously unforeseen combination therapies incorporating CD73 inhibition.

    1. Cancer Biology
    2. Genetics and Genomics
    Changyu Zhu, Yadira M Soto-Feliciano ... Scott W Lowe
    Research Article

    Mutations in genes encoding components of chromatin modifying and remodeling complexes are among the most frequently observed somatic events in human cancers. For example, missense and nonsense mutations targeting the mixed lineage leukemia family member 3 (MLL3, encoded by KMT2C) histone methyltransferase occur in a range of solid tumors, and heterozygous deletions encompassing KMT2C occur in a subset of aggressive leukemias. Although MLL3 loss can promote tumorigenesis in mice, the molecular targets and biological processes by which MLL3 suppresses tumorigenesis remain poorly characterized. Here we combined genetic, epigenomic, and animal modeling approaches to demonstrate that one of the mechanisms by which MLL3 links chromatin remodeling to tumor suppression is by co-activating the Cdkn2a tumor suppressor locus. Disruption of Kmt2c cooperates with Myc overexpression in the development of murine hepatocellular carcinoma (HCC), in which MLL3 binding to the Cdkn2a locus is blunted, resulting in reduced H3K4 methylation and low expression levels of the locus-encoded tumor suppressors p16/Ink4a and p19/Arf. Conversely, elevated KMT2C expression increases its binding to the CDKN2A locus and co-activates gene transcription. Endogenous Kmt2c restoration reverses these chromatin and transcriptional effects and triggers Ink4a/Arf-dependent apoptosis. Underscoring the human relevance of this epistasis, we found that genomic alterations in KMT2C and CDKN2A were associated with similar transcriptional profiles in human HCC samples. These results collectively point to a new mechanism for disrupting CDKN2A activity during cancer development and, in doing so, link MLL3 to an established tumor suppressor network.