A low Smc flux avoids collisions and facilitates chromosome organization in B. subtilis

  1. Anna Anchimiuk
  2. Virginia S Lioy
  3. Florian Patrick Bock
  4. Anita Minnen
  5. Frederic Boccard
  6. Stephan Gruber  Is a corresponding author
  1. University of Lausanne, Switzerland
  2. Université Paris-Saclay, France
  3. Max Planck Institute of Biochemistry, Germany

Abstract

SMC complexes are widely conserved ATP-powered DNA-loop-extrusion motors indispensable for organizing and faithfully segregating chromosomes. How SMC complexes translocate along DNA for loop extrusion and what happens when two complexes meet on the same DNA molecule is largely unknown. Revealing the origins and the consequences of SMC encounters is crucial for understanding the folding process not only of bacterial, but also of eukaryotic chromosomes. Here, we uncover several factors that influence bacterial chromosome organization by modulating the probability of such clashes. These factors include the number, the strength, and the distribution of Smc loading sites, the residency time on the chromosome, the translocation rate, and the cellular abundance of Smc complexes. By studying various mutants, we show that these parameters are fine-tuned to reduce the frequency of encounters between Smc complexes, presumably as a risk mitigation strategy. Mild perturbations hamper chromosome organization by causing Smc collisions, implying that the cellular capacity to resolve them is limited. Altogether, we identify mechanisms that help to avoid Smc collisions and their resolution by Smc traversal or other potentially risky molecular transactions.

Data availability

All deep sequencing data has been deposited to the NCBI GEO database and will be available at GEO Accession number: GSE163573All other raw data will be made available via Mendeley Data DOI:10.17632/kvjd6nj2bh.2

The following data sets were generated
    1. Anchimiuk A
    2. Gruber S
    (2021) Smc_collisions
    Mendeley Data, V2, doi: 10.17632/kvjd6nj2bh.2.

Article and author information

Author details

  1. Anna Anchimiuk

    Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Virginia S Lioy

    Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Florian Patrick Bock

    Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Anita Minnen

    Chromosome Organisation and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Frederic Boccard

    Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephan Gruber

    Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
    For correspondence
    stephan.gruber@unil.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0150-0395

Funding

European Reserach Council Horizon 2020 (724482)

  • Stephan Gruber

Agence Nationale de la Recherche (ANR-CE12-0013-01)

  • Frederic Boccard

Assocation pour la Recherche contre le Cancer

  • Frederic Boccard

Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg

  • Anita Minnen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Anchimiuk et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,008
    views
  • 157
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna Anchimiuk
  2. Virginia S Lioy
  3. Florian Patrick Bock
  4. Anita Minnen
  5. Frederic Boccard
  6. Stephan Gruber
(2021)
A low Smc flux avoids collisions and facilitates chromosome organization in B. subtilis
eLife 10:e65467.
https://doi.org/10.7554/eLife.65467

Share this article

https://doi.org/10.7554/eLife.65467

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ashley L Cook, Surojit Sur ... Nicolas Wyhs
    Research Article

    Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.