Cytosolic aggregation of mitochondrial proteins disrupts cellular homeostasis by stimulating the aggregation of other proteins

Abstract

Mitochondria are organelles with their own genomes, but they rely on the import of nuclear-encoded proteins that are translated by cytosolic ribosomes. Therefore, it is important to understand whether failures in the mitochondrial uptake of these nuclear-encoded proteins can cause proteotoxic stress and identify response mechanisms that may counteract it. Here, we report that upon impairments in mitochondrial protein import, high-risk precursor and immature forms of mitochondrial proteins form aberrant deposits in the cytosol. These deposits then cause further cytosolic accumulation and consequently aggregation of other mitochondrial proteins and disease-related proteins, including α-synuclein and amyloid β. This aggregation triggers a cytosolic protein homeostasis imbalance that is accompanied by specific molecular chaperone responses at both the transcriptomic and protein levels. Altogether, our results provide evidence that mitochondrial dysfunction, specifically protein import defects, contributes to impairments in protein homeostasis, thus revealing a possible molecular mechanism by which mitochondria are involved in neurodegenerative diseases.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE147284

The following data sets were generated

Article and author information

Author details

  1. Urszula Nowicka

    Centre of New Technologies, University of Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.
  2. Piotr Chroscicki

    Centre of New Technologies, University of Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.
  3. Karen Stroobants

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  4. Maria Sladowska

    Centre of New Technologies, University of Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.
  5. Michal Turek

    Centre of New Technologies, University of Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.
  6. Barbara Uszczynska-Ratajczak

    Centre of New Technologies, University of Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.
  7. Rishika Kundra

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  8. Tomasz Goral

    Centre of New Technologies, University of Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.
  9. Michele Perni

    Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7593-8376
  10. Christopher M Dobson

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  11. Michele Vendruscolo

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3616-1610
  12. Agnieszka Chacinska

    Centre of New Technologies, University of Warsaw, Warsaw, Poland
    For correspondence
    a.chacinska@imol.institute
    Competing interests
    Agnieszka Chacinska, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2832-2568

Funding

Centre for Misfolding Diseases

  • Michele Vendruscolo

National Science Centre (2015/18/A/NZ1/00025)

  • Agnieszka Chacinska

Ministerial funds for science (Ideas Plus,000263)

  • Agnieszka Chacinska

Foundation of Polish Science and German Research Foundation (Copernicus Award)

  • Agnieszka Chacinska

Foundation for Polish Science co-financed by the European Union under the Eropean Regional Development Fund (Homing,POIR.04.04.00-00-3FE4/17)

  • Urszula Nowicka

European Union's Horizon 2020, Marie Sklodowska-Curie grant agreement No 665778 (POLONEZ,2016/23/P/NZ3/03730)

  • Barbara Uszczynska-Ratajczak

European Union's Horizon 2020, Marie Sklodowska-Curie grant agreement No 665778 (POLONEZ,2016/21JPJNZ3/03891)

  • Michal Turek

EMBO (Short-term fellowship,7124)

  • Maria Sladowska

William B. Harrison Foundation

  • Michele Vendruscolo

Foundation for Polish Science co-financed by the European Union under the Eropean Regional Development Fund (International Research Agendas programme, Regenerative Mechanisms for Health, MAB/2017/2)

  • Agnieszka Chacinska

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Nowicka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,089
    views
  • 808
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Urszula Nowicka
  2. Piotr Chroscicki
  3. Karen Stroobants
  4. Maria Sladowska
  5. Michal Turek
  6. Barbara Uszczynska-Ratajczak
  7. Rishika Kundra
  8. Tomasz Goral
  9. Michele Perni
  10. Christopher M Dobson
  11. Michele Vendruscolo
  12. Agnieszka Chacinska
(2021)
Cytosolic aggregation of mitochondrial proteins disrupts cellular homeostasis by stimulating the aggregation of other proteins
eLife 10:e65484.
https://doi.org/10.7554/eLife.65484

Share this article

https://doi.org/10.7554/eLife.65484

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.