Cytosolic aggregation of mitochondrial proteins disrupts cellular homeostasis by stimulating the aggregation of other proteins

Abstract

Mitochondria are organelles with their own genomes, but they rely on the import of nuclear-encoded proteins that are translated by cytosolic ribosomes. Therefore, it is important to understand whether failures in the mitochondrial uptake of these nuclear-encoded proteins can cause proteotoxic stress and identify response mechanisms that may counteract it. Here, we report that upon impairments in mitochondrial protein import, high-risk precursor and immature forms of mitochondrial proteins form aberrant deposits in the cytosol. These deposits then cause further cytosolic accumulation and consequently aggregation of other mitochondrial proteins and disease-related proteins, including α-synuclein and amyloid β. This aggregation triggers a cytosolic protein homeostasis imbalance that is accompanied by specific molecular chaperone responses at both the transcriptomic and protein levels. Altogether, our results provide evidence that mitochondrial dysfunction, specifically protein import defects, contributes to impairments in protein homeostasis, thus revealing a possible molecular mechanism by which mitochondria are involved in neurodegenerative diseases.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE147284

The following data sets were generated

Article and author information

Author details

  1. Urszula Nowicka

    Centre of New Technologies, University of Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.
  2. Piotr Chroscicki

    Centre of New Technologies, University of Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.
  3. Karen Stroobants

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  4. Maria Sladowska

    Centre of New Technologies, University of Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.
  5. Michal Turek

    Centre of New Technologies, University of Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.
  6. Barbara Uszczynska-Ratajczak

    Centre of New Technologies, University of Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.
  7. Rishika Kundra

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  8. Tomasz Goral

    Centre of New Technologies, University of Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.
  9. Michele Perni

    Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7593-8376
  10. Christopher M Dobson

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  11. Michele Vendruscolo

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3616-1610
  12. Agnieszka Chacinska

    Centre of New Technologies, University of Warsaw, Warsaw, Poland
    For correspondence
    a.chacinska@imol.institute
    Competing interests
    Agnieszka Chacinska, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2832-2568

Funding

Centre for Misfolding Diseases

  • Michele Vendruscolo

National Science Centre (2015/18/A/NZ1/00025)

  • Agnieszka Chacinska

Ministerial funds for science (Ideas Plus,000263)

  • Agnieszka Chacinska

Foundation of Polish Science and German Research Foundation (Copernicus Award)

  • Agnieszka Chacinska

Foundation for Polish Science co-financed by the European Union under the Eropean Regional Development Fund (Homing,POIR.04.04.00-00-3FE4/17)

  • Urszula Nowicka

European Union's Horizon 2020, Marie Sklodowska-Curie grant agreement No 665778 (POLONEZ,2016/23/P/NZ3/03730)

  • Barbara Uszczynska-Ratajczak

European Union's Horizon 2020, Marie Sklodowska-Curie grant agreement No 665778 (POLONEZ,2016/21JPJNZ3/03891)

  • Michal Turek

EMBO (Short-term fellowship,7124)

  • Maria Sladowska

William B. Harrison Foundation

  • Michele Vendruscolo

Foundation for Polish Science co-financed by the European Union under the Eropean Regional Development Fund (International Research Agendas programme, Regenerative Mechanisms for Health, MAB/2017/2)

  • Agnieszka Chacinska

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Nowicka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,015
    views
  • 797
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Urszula Nowicka
  2. Piotr Chroscicki
  3. Karen Stroobants
  4. Maria Sladowska
  5. Michal Turek
  6. Barbara Uszczynska-Ratajczak
  7. Rishika Kundra
  8. Tomasz Goral
  9. Michele Perni
  10. Christopher M Dobson
  11. Michele Vendruscolo
  12. Agnieszka Chacinska
(2021)
Cytosolic aggregation of mitochondrial proteins disrupts cellular homeostasis by stimulating the aggregation of other proteins
eLife 10:e65484.
https://doi.org/10.7554/eLife.65484

Share this article

https://doi.org/10.7554/eLife.65484

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.