Ascorbic acid supports ex vivo generation of plasmacytoid dendritic cells from circulating hematopoietic stem cells

Abstract

Plasmacytoid dendritic cells (pDCs) constitute a rare type of immune cell with multifaceted functions, but their potential use as a cell-based immunotherapy is challenged by the scarce cell numbers that can be extracted from blood. Here, we systematically investigate culture parameters for generating pDCs from hematopoietic stem and progenitor cells (HSPCs). Using optimized conditions combined with implementation of HSPC pre-expansion, we generate an average of 465 million HSPC-derived pDCs (HSPC-pDCs) starting from 100,000 cord blood-derived HSPCs. Furthermore, we demonstrate that such protocol allows HSPC-pDC generation from whole blood HSPCs, and these cells display a pDC phenotype and function. Using GMP compliant medium, we observe a remarkable loss of TLR7/9 responses, which is rescued by ascorbic acid supplementation. Ascorbic acid induces transcriptional signatures associated with pDC-specific innate immune pathways suggesting an undescribed role of ascorbic acid for pDC functionality. This constitutes the first protocol for generating pDCs from whole blood, and lay the foundation for investigating HSPC-pDCs for cell-based immunotherapy.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Sequencing data have been deposited in Dryad (doi:10.5061/dryad.69p8cz92z).

The following data sets were generated

Article and author information

Author details

  1. Anders Laustsen

    Department of Biomedicine, Aarhus University, Aarhus, Denmark
    Competing interests
    Anders Laustsen, Aarhus University has filed a patent related to this work with AL, MRJ, and ROB as co-inventors. AL, MRJ and ROB hold equity in the Danish company UNIKUM Therapeutics ApS. Part-time employees of UNIKUM Therapeutics ApS..
  2. Renée M van der Sluis

    Department of Biomedicine, Aarhus University, Aarhus C., Denmark
    Competing interests
    No competing interests declared.
  3. Albert Gris-Oliver

    Department of Biomedicine, Aarhus University, Aarhus, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1802-9541
  4. Sabina Sánchez Hernández

    Department of Biomedicine, Aarhus University, Aarhus, Denmark
    Competing interests
    No competing interests declared.
  5. Ena Cemalovic

    Department of Biomedicine, Aarhus University, Aarhus, Denmark
    Competing interests
    No competing interests declared.
  6. Hai Q Tang

    Department of Obstetrics and Gynaecology, Aarhus University Hospital, Aarhus N., Denmark
    Competing interests
    No competing interests declared.
  7. Lars Henning Pedersen

    Department of Obstetrics and Gynaecology, Aarhus University Hospital, Aarhus N., Denmark
    Competing interests
    No competing interests declared.
  8. Niels Uldbjerg

    Department of Clinical Medicine, niels uldbjerg, Aarhus V, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6449-6426
  9. Martin R Jakobsen

    Department of Biomedicine, Aarhus University, Aarhus, Denmark
    For correspondence
    mrj@biomed.au.dk
    Competing interests
    Martin R Jakobsen, Aarhus University has filed a patent related to this work with AL, MRJ, and ROB as co-inventors. AL, MRJ and ROB hold equity in the Danish company UNIKUM Therapeutics ApS. Serves on the board of directors of UNIKUM Therapeutics ApS..
  10. Rasmus O Bak

    Department of Biomedicine, Aarhus University, Aarhus C., Denmark
    For correspondence
    bak@biomed.au.dk
    Competing interests
    Rasmus O Bak, Aarhus University has filed a patent related to this work with AL, MRJ, and ROB as co-inventors. AL, MRJ and ROB hold equity in the Danish company UNIKUM Therapeutics ApS. Part-time employees of UNIKUM Therapeutics ApS. Holds equity in Graphite Bio..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7383-0297

Funding

Lundbeckfonden (R238-2016-3349)

  • Rasmus O Bak

Aarhus Institute of Advanced Studies, Aarhus Universitet

  • Renée M van der Sluis
  • Rasmus O Bak

European Union (609033)

  • Rasmus O Bak

Lundbeckfonden (R238-2016-2708)

  • Martin R Jakobsen

Independent Research Fund Denmark (8020-00201B)

  • Martin R Jakobsen

Novo Nordisk Fonden (NNF18OC0053146)

  • Martin R Jakobsen

European Union (754513)

  • Renée M van der Sluis

Carlsbergfondet (CF17-0129)

  • Rasmus O Bak

Carlsbergfondet (CF20-0424)

  • Rasmus O Bak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carlos Isales, Medical College of Georgia at Augusta University, United States

Ethics

Human subjects: De-identified umbilical cord blood (UCB) samples were obtained following scheduled caesarean section deliveries of healthy infants at Department of Gynecology and Obstetrics, Skejby University Hospital. Consent was obtained from the mothers, but studies on anonymized samples, such as those used in the present study, are exempt from ethical permissions in Denmark (Kommiteeloven {section sign} {section sign}14. 3).Buffy coat samples were obtained from normal healthy donors from Aarhus University Hospital Blood Bank. These were de-identified samples and studies on anonymized samples are exempt from ethical permissions in Denmark (Kommiteeloven {section sign} {section sign}14. 3).

Version history

  1. Received: December 7, 2020
  2. Accepted: September 1, 2021
  3. Accepted Manuscript published: September 2, 2021 (version 1)
  4. Version of Record published: September 16, 2021 (version 2)

Copyright

© 2021, Laustsen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,659
    views
  • 237
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anders Laustsen
  2. Renée M van der Sluis
  3. Albert Gris-Oliver
  4. Sabina Sánchez Hernández
  5. Ena Cemalovic
  6. Hai Q Tang
  7. Lars Henning Pedersen
  8. Niels Uldbjerg
  9. Martin R Jakobsen
  10. Rasmus O Bak
(2021)
Ascorbic acid supports ex vivo generation of plasmacytoid dendritic cells from circulating hematopoietic stem cells
eLife 10:e65528.
https://doi.org/10.7554/eLife.65528

Share this article

https://doi.org/10.7554/eLife.65528

Further reading

    1. Immunology and Inflammation
    Thomas Morgan Li, Victoria Zyulina ... Theresa T Lu
    Research Article

    The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.

    1. Immunology and Inflammation
    Steven Klupt, Kyong Tkhe Fam ... Howard C Hang
    Research Article

    Enterococcus faecium is a microbiota species in humans that can modulate host immunity (Griffin and Hang, 2022), but has also acquired antibiotic resistance and is a major cause of hospital-associated infections (Van Tyne and Gilmore, 2014). Notably, diverse strains of E. faecium produce SagA, a highly conserved peptidoglycan hydrolase that is sufficient to promote intestinal immunity (Rangan et al., 2016; Pedicord et al., 2016; Kim et al., 2019) and immune checkpoint inhibitor antitumor activity (Griffin et al., 2021). However, the functions of SagA in E. faecium were unknown. Here, we report that deletion of sagA impaired E. faecium growth and resulted in bulged and clustered enterococci due to defective peptidoglycan cleavage and cell separation. Moreover, ΔsagA showed increased antibiotic sensitivity, yielded lower levels of active muropeptides, displayed reduced activation of the peptidoglycan pattern-recognition receptor NOD2, and failed to promote cancer immunotherapy. Importantly, the plasmid-based expression of SagA, but not its catalytically inactive mutant, restored ΔsagA growth, production of active muropeptides, and NOD2 activation. SagA is, therefore, essential for E. faecium growth, stress resistance, and activation of host immunity.