Dynamic decision policy reconfiguration under outcome uncertainty

  1. Krista Bond  Is a corresponding author
  2. Kyle Dunovan
  3. Alexis Porter
  4. Jonathan E Rubin
  5. Timothy Verstynen  Is a corresponding author
  1. Carnegie Mellon University, United States
  2. Northwestern University, United States
  3. University of Pittsburgh, United States

Abstract

In uncertain or unstable environments, sometimes the best decision is to change your mind. To shed light on this flexibility, we evaluated how the underlying decision policy adapts when the most rewarding action changes. Human participants performed a dynamic two-armed bandit task that manipulated the certainty in relative reward (conflict) and the reliability of action-outcomes (volatility). Continuous estimates of conflict and volatility contributed to shifts in exploratory states by changing both the rate of evidence accumulation (drift rate) and the amount of evidence needed to make a decision (boundary height), respectively. At the trialwise level, following a switch in the optimal choice, the drift rate plummets and the boundary height weakly spikes, leading to a slow exploratory state. We find that the drift rate drives most of this response, with an unreliable contribution of boundary height across experiments. Surprisingly, we find no evidence that pupillary responses associated with decision policy changes. We conclude that humans show a stereotypical shift in their decision policies in response to environmental changes.

Data availability

Behavioral data and their computational derivatives are available at https://github.com/kmbond/dynamic_decision_policy_reconfiguration. Code used to generate figures can be found here: https://github.com/kmbond/dynamic_decision_policy_reconfiguration/tree/master/revised_figure_nbs.Raw pupillometry data (DOI: 10.1184/R1/13543133), the features of the task-evoked pupillometry response (DOI: 10.1184/R1/13543067), and the principal components calculated from those features (DOI: 10.1184/R1/13543160) are available at https://kilthub.cmu.edu/projects/Dynamic_decision_policy_reconfiguration_under_outcome_uncertainty/96116.

Article and author information

Author details

  1. Krista Bond

    Department of Psychology, Carnegie Mellon University, Pittsburgh, United States
    For correspondence
    kbond@andrew.cmu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1492-6798
  2. Kyle Dunovan

    Department of Psychology, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7857-5133
  3. Alexis Porter

    Department of Psychology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jonathan E Rubin

    Department of Mathematics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1513-1551
  5. Timothy Verstynen

    Department of Psychology, Carnegie Mellon University, Pittsburgh, United States
    For correspondence
    timothyv@andrew.cmu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4720-0336

Funding

Air Force Research Laboratory (FA9550-18-1-0251)

  • Krista Bond
  • Timothy Verstynen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Neurologically healthy adults were recruited from thelocal university population. All procedures were approved by the Carnegie Mellon University Institutional Review Board (Approval Code: 2018_00000195; Funding: Air Force Research Laboratory, Grant Office ID: 180119). All research participants provided informed consent to participate in the study and consent to publish any research findings based on their provided data.

Copyright

© 2021, Bond et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Krista Bond
  2. Kyle Dunovan
  3. Alexis Porter
  4. Jonathan E Rubin
  5. Timothy Verstynen
(2021)
Dynamic decision policy reconfiguration under outcome uncertainty
eLife 10:e65540.
https://doi.org/10.7554/eLife.65540

Share this article

https://doi.org/10.7554/eLife.65540