In Vivo Models: Visualizing traumatic brain injuries

Zebrafish larvae models can be used to study the link between seizures and the neurodegeneration that follows brain trauma.
  1. Marc Ekker  Is a corresponding author
  1. Department of Biology, University of Ottawa, Canada

Traumatic brain injuries are a leading cause of death and disability in younger people, as well as an important risk factor for neurodegenerative diseases and dementia in older adults. They can be caused by direct physical insults, whiplash or shockwaves such as those produced by explosions (Cruz-Haces et al., 2017). Yet traumatic events can also have effects beyond the immediate death and damage to neurons. In particular, they can disrupt a protein known as Tau, which normally maintains the stability of many neuronal cells. When this happens, an abnormal, hyperphosphorylated version of Tau accumulates in cells and spreads throughout the central nervous system by turning healthy Tau proteins into the harmful variant (Johnson et al., 2013; Ojo et al., 2016; Zanier et al., 2018). This accumulation is the hallmark of illnesses known as tauopathies, which include Alzheimer’s disease and a progressive brain condition found in athletes who experience regular head blows.

Scientists need accessible animal models in which they can easily observe and manipulate the proliferation of abnormal Tau proteins after a brain trauma. Rat and mouse models exist, but they are expensive and not well suited to visualizing what is happening inside the brain. Now, in eLife, Ted Allison (University of Alberta) and colleagues – including Hadeel Alyenbaawi (Alberta and Majmaah University) as first author and other researchers in Alberta and Pittsburgh – report new zebrafish larvae models for both tauopathies and traumatic brain injuries (Alyenbaawi et al., 2021).

The first model is formed of transgenic, ‘Tau-GFP reporter’ zebrafish in which the spread of the abnormal protein can be directly observed. To achieve this result, Alyenbaawi et al. genetically manipulated the animals so that their neurons would carry a reporter version of Tau that is fused with a green fluorescent protein (or GFP). As the larvae are transparent, their nervous system and the fluorescent Tau are easily visible. The fish were then injected with abnormal mice Tau proteins, causing the reporter Tau to aggregate into mobile ‘puncta’ – small dots which are a hallmark of tauopathies. More puncta were observed when extracts from brains with Tau-linked conditions were injected into the larvae, rather than the normal proteins.

Alyenbaawi et al. also devised a simple and inexpensive zebrafish model for traumatic brain injury. They put the larvae inside a closed syringe, and dropped a weight onto the plunger, creating a shockwave to mimic blast injuries in humans. Three days in a row of this regimen creates conditions reminiscent of those faced in repetitive sports injury. In the Tau-GFP reporter larvae, the shockwave treatment led to fluorescent puncta in the brain and spinal cord, consistent with traumatic brain injuries leading to Tau pathologies (Figure 1). Similarly, past reports have shown that healthy mice developed a Tau-linked condition when they received brain extracts from conspecifics that experienced traumatic brain injuries (Zanier et al., 2018).

Traumatic brain injury results in seizures and Tau-linked conditions in zebrafish larvae.

Zebrafish larvae with neurons that carry Tau proteins fused with a fluorescent reporter (Tau4R-GFP) are subjected to a brain injury (left). Many then experience seizures, and without treatment they develop a Tau-linked condition in which the proteins aggregate and the neurons die (top right). Larvae that receive anticonvulsants are protected to a certain extent against seizures and the Tau-linked illness (bottom right).

Image credit: Figure based on figure 7 of Alyenbaawi et al., 2021 (CCBY 4.0).

In humans, epileptic seizures appear in over half of traumatic brain injury victims, and especially in those who have received a blast injury; these episodes may initiate or exacerbate the progression of Tau-linked conditions. In zebrafish, the traumatic brain injury larvae also developed seizure-like behaviors, with the intensity of the seizures being positively correlated to the spread of abnormal Tau. Drugs that promoted or stopped seizures respectively increased or decreased the extent of the Tau-linked condition, suggesting that anticonvulsants could help to manage brain traumas in the clinic (Figure 1).

Alyenbaawi et al. carefully identified the limitations of their models, observing for instance that the Tau-GFP reporter could spread in larvae even when the animals did not receive anomalous Tau proteins. This may result from relatively high levels of the Tau reporter in the transgenic animals, outlining the importance of controlling the expression levels of the transgene.

Apart for a recent model which used ultrasound, very few methods have been available so far to simulate traumatic brain injury in zebrafish (Cho et al., 2020). This was particularly the case for larvae, despite these young animals having a more easily observable central nervous system, a high throughput, and an ethical advantage compared to adults. The models developed by Alyenbaawi and colleagues thus constitute a welcome addition to understand the mechanisms associated with traumatic brain injury.

References

Article and author information

Author details

  1. Marc Ekker

    Marc Ekker is in the Department of Biology, University of Ottawa, Ottawa, Canada

    For correspondence
    mekker@uottawa.ca
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7947-8063

Publication history

  1. Version of Record published:

Copyright

© 2021, Ekker

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,384
    views
  • 114
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marc Ekker
(2021)
In Vivo Models: Visualizing traumatic brain injuries
eLife 10:e65676.
https://doi.org/10.7554/eLife.65676
  1. Further reading

Further reading

    1. Neuroscience
    Katie Morris, Edita Bulovaite ... Mathew H Horrocks
    Research Article

    The concept that dimeric protein complexes in synapses can sequentially replace their subunits has been a cornerstone of Francis Crick’s 1984 hypothesis, explaining how long-term memories could be maintained in the face of short protein lifetimes. However, it is unknown whether the subunits of protein complexes that mediate memory are sequentially replaced in the brain and if this process is linked to protein lifetime. We address these issues by focusing on supercomplexes assembled by the abundant postsynaptic scaffolding protein PSD95, which plays a crucial role in memory. We used single-molecule detection, super-resolution microscopy and MINFLUX to probe the molecular composition of PSD95 supercomplexes in mice carrying genetically encoded HaloTags, eGFP, and mEoS2. We found a population of PSD95-containing supercomplexes comprised of two copies of PSD95, with a dominant 12.7 nm separation. Time-stamping of PSD95 subunits in vivo revealed that each PSD95 subunit was sequentially replaced over days and weeks. Comparison of brain regions showed subunit replacement was slowest in the cortex, where PSD95 protein lifetime is longest. Our findings reveal that protein supercomplexes within the postsynaptic density can be maintained by gradual replacement of individual subunits providing a mechanism for stable maintenance of their organization. Moreover, we extend Crick’s model by suggesting that synapses with slow subunit replacement of protein supercomplexes and long-protein lifetimes are specialized for long-term memory storage and that these synapses are highly enriched in superficial layers of the cortex where long-term memories are stored.

    1. Neuroscience
    Samyogita Hardikar, Bronte Mckeown ... Jonathan Smallwood
    Research Article

    Complex macro-scale patterns of brain activity that emerge during periods of wakeful rest provide insight into the organisation of neural function, how these differentiate individuals based on their traits, and the neural basis of different types of self-generated thoughts. Although brain activity during wakeful rest is valuable for understanding important features of human cognition, its unconstrained nature makes it difficult to disentangle neural features related to personality traits from those related to the thoughts occurring at rest. Our study builds on recent perspectives from work on ongoing conscious thought that highlight the interactions between three brain networks – ventral and dorsal attention networks, as well as the default mode network. We combined measures of personality with state-of-the-art indices of ongoing thoughts at rest and brain imaging analysis and explored whether this ‘tri-partite’ view can provide a framework within which to understand the contribution of states and traits to observed patterns of neural activity at rest. To capture macro-scale relationships between different brain systems, we calculated cortical gradients to describe brain organisation in a low-dimensional space. Our analysis established that for more introverted individuals, regions of the ventral attention network were functionally more aligned to regions of the somatomotor system and the default mode network. At the same time, a pattern of detailed self-generated thought was associated with a decoupling of regions of dorsal attention from regions in the default mode network. Our study, therefore, establishes that interactions between attention systems and the default mode network are important influences on ongoing thought at rest and highlights the value of integrating contemporary perspectives on conscious experience when understanding patterns of brain activity at rest.