Endogenous p53 expression in human and mouse is not regulated by its 3′UTR

  1. Sibylle Mitschka
  2. Christine Mayr  Is a corresponding author
  1. Memorial Sloan Kettering Cancer Center, United States

Abstract

The TP53 gene encodes the tumor suppressor p53 which is functionally inactivated in many human cancers. Numerous studies suggested that 3′UTR-mediated p53 expression regulation plays a role in tumorigenesis and could be exploited for therapeutic purposes. However, these studies did not investigate post-transcriptional regulation of the native TP53 gene. Here, we used CRISPR/Cas9 to delete the human and mouse TP53/Trp53 3′UTRs while preserving endogenous mRNA processing. This revealed that the endogenous 3′UTR is not involved in regulating p53 mRNA or protein expression neither in steady state nor after genotoxic stress. Using reporter assays, we confirmed the previously observed repressive effects of the isolated 3′UTR. However, addition of the TP53 coding region to the reporter had a dominant negative impact on expression as its repressive effect was stronger and abrogated the contribution of the 3′UTR. Our data highlight the importance of genetic models in the validation of post-transcriptional gene regulatory effects.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sibylle Mitschka

    Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christine Mayr

    Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    mayrc@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7084-7608

Funding

NIH Office of the Director (DP1-GM123454)

  • Christine Mayr

Pershing Square Sohn Cancer Research Alliance

  • Christine Mayr

National Cancer Institute (P30 CA008748)

  • Christine Mayr

Deutsche Forschungsgemeinschaft

  • Sibylle Mitschka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#18-07-010) of Memorial Sloan Kettering Cancer Center. All procedures were approved by the Institutional Animal Care and Use Committee at MSKCC under protocol #18-07-010.

Reviewing Editor

  1. Ashish Lal, National Institutes of Health, United States

Publication history

  1. Received: December 12, 2020
  2. Accepted: May 5, 2021
  3. Accepted Manuscript published: May 6, 2021 (version 1)
  4. Version of Record published: May 20, 2021 (version 2)

Copyright

© 2021, Mitschka & Mayr

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,902
    Page views
  • 487
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sibylle Mitschka
  2. Christine Mayr
(2021)
Endogenous p53 expression in human and mouse is not regulated by its 3′UTR
eLife 10:e65700.
https://doi.org/10.7554/eLife.65700

Further reading

    1. Cancer Biology
    2. Cell Biology
    Katarzyna Bogucka-Janczi, Gregory Harms ... Krishnaraj Rajalingam
    Research Advance Updated

    The actin cytoskeleton is tightly controlled by RhoGTPases, actin binding-proteins and nucleation-promoting factors to perform fundamental cellular functions. We have previously shown that ERK3, an atypical MAPK, controls IL-8 production and chemotaxis (Bogueka et al., 2020). Here, we show in human cells that ERK3 directly acts as a guanine nucleotide exchange factor for CDC42 and phosphorylates the ARP3 subunit of the ARP2/3 complex at S418 to promote filopodia formation and actin polymerization, respectively. Consistently, depletion of ERK3 prevented both basal and EGF-dependent RAC1 and CDC42 activation, maintenance of F-actin content, filopodia formation, and epithelial cell migration. Further, ERK3 protein bound directly to the purified ARP2/3 complex and augmented polymerization of actin in vitro. ERK3 kinase activity was required for the formation of actin-rich protrusions in mammalian cells. These findings unveil a fundamentally unique pathway employed by cells to control actin-dependent cellular functions.

    1. Cancer Biology
    2. Cell Biology
    Julieta Martino, Sebastián Omar Siri ... Vanesa Gottifredi
    Research Article Updated

    The trapping of Poly-ADP-ribose polymerase (PARP) on DNA caused by PARP inhibitors (PARPi) triggers acute DNA replication stress and synthetic lethality (SL) in BRCA2-deficient cells. Hence, DNA damage is accepted as a prerequisite for SL in BRCA2-deficient cells. In contrast, here we show that inhibiting ROCK in BRCA2-deficient cells triggers SL independently from acute replication stress. Such SL is preceded by polyploidy and binucleation resulting from cytokinesis failure. Such initial mitosis abnormalities are followed by other M phase defects, including anaphase bridges and abnormal mitotic figures associated with multipolar spindles, supernumerary centrosomes and multinucleation. SL was also triggered by inhibiting Citron Rho-interacting kinase, another enzyme that, similarly to ROCK, regulates cytokinesis. Together, these observations demonstrate that cytokinesis failure triggers mitotic abnormalities and SL in BRCA2-deficient cells. Furthermore, the prevention of mitotic entry by depletion of Early mitotic inhibitor 1 (EMI1) augmented the survival of BRCA2-deficient cells treated with ROCK inhibitors, thus reinforcing the association between M phase and cell death in BRCA2-deficient cells. This novel SL differs from the one triggered by PARPi and uncovers mitosis as an Achilles heel of BRCA2-deficient cells.