Abstract

Transgenerational inheritance of small RNAs challenges basic concepts of heredity. In C. elegans nematodes, small RNAs are transmitted across generations to establish a transgenerational memory trace of ancestral environments and distinguish self-genes from non-self-elements. Carryover of aberrant heritable small RNA responses was shown to be maladaptive and to lead to sterility. Here we show that various types of stress (starvation, high temperatures, and high osmolarity) induce resetting of ancestral small RNA responses and a genome-wide reduction in heritable small RNA levels. We found that mutants that are defective in various stress pathways exhibit irregular RNAi inheritance dynamics even in the absence of stress. Moreover, we discovered that resetting of ancestral RNAi responses is specifically orchestrated by factors that function in the p38 MAPK pathway and the transcription factor SKN-1/Nrf2. Stress-dependent termination of small RNA inheritance could protect from run-on of environment-irrelevant heritable gene regulation.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE129988

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Leah Houri Zeevi

    Neurobiology, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    leah.houri@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2903-5082
  2. Guy Teichman

    Neurobiology, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    guy.teichman@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  3. Hila Gingold

    Neurobiology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Oded Rechavi

    Neurobiology, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    odedrechavi@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6172-3024

Funding

Clore Foundation (Graduate Student Fellowship)

  • Leah Houri Zeevi

Milner Foundation (Graduate Student Fellowship)

  • Guy Teichman

European Research Council (#335624)

  • Oded Rechavi

Israel Science Foundation (#1339/17)

  • Oded Rechavi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kevin Struhl, Harvard Medical School, United States

Version history

  1. Received: December 30, 2020
  2. Accepted: March 15, 2021
  3. Accepted Manuscript published: March 17, 2021 (version 1)
  4. Version of Record published: April 4, 2021 (version 2)

Copyright

© 2021, Houri Zeevi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,472
    views
  • 562
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Leah Houri Zeevi
  2. Guy Teichman
  3. Hila Gingold
  4. Oded Rechavi
(2021)
Stress resets ancestral heritable small RNA responses
eLife 10:e65797.
https://doi.org/10.7554/eLife.65797

Share this article

https://doi.org/10.7554/eLife.65797

Further reading

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Maria L Adelus, Jiacheng Ding ... Casey E Romanoski
    Research Article

    Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.