Osteogenic growth peptide is a potent anti-inflammatory and bone preserving hormone via cannabinoid receptor type 2

  1. Bitya Raphael-Mizrahi  Is a corresponding author
  2. Malka Attar-Lamdar
  3. Mukesh Chourasia
  4. Maria G Cascio
  5. Avital Shurki
  6. Joseph Tam
  7. Moshe Neuman
  8. Neta Rimmerman
  9. Zvi Vogel
  10. Arie Shteyer
  11. Roger G Pertwee
  12. Andreas Zimmer
  13. Natalya Kogan
  14. Itai Bab
  15. Yankel Gabet  Is a corresponding author
  1. Tel Aviv University, Israel
  2. Hebrew University of Jerusalem, Israel
  3. University of Aberdeen, United Kingdom
  4. Weizmann Institute of Science, Israel
  5. University of Bonn, Germany

Abstract

The endocannabinoid system consists mainly of 2-arachidonoylglycerol and anandamide, as well as cannabinoid receptor type 1 (CB1) and type 2 (CB2). Based on previous studies, we hypothesized that a circulating peptide previously identified as Osteogenic Growth Peptide (OGP) maintains a bone-protective CB2 tone. We tested OGP activity in mouse models and cells, and in human osteoblasts. We show that the OGP effects on osteoblast proliferation, osteoclastogenesis, and macrophage inflammation in vitro, as well as rescue of ovariectomy-induced bone loss and prevention of ear edema in vivo are all abrogated by genetic or pharmacological ablation of CB2. We also demonstrate that OGP binds at CB2 and may act as both an agonist and positive allosteric modulator in the presence of other lipophilic agonists. In premenopausal women, OGP circulating levels significantly decline with age. In adult mice, exogenous administration of OGP completely prevented age-related bone loss. Our findings suggest that OGP attenuates age-related bone loss by maintaining a skeletal CB2 tone. Importantly, they also indicate the occurrence of an endogenous peptide that signals via CB2 receptor in health and disease.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 and 2 and 4-8.

Article and author information

Author details

  1. Bitya Raphael-Mizrahi

    Department of Anatomy and Anthropology, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    bityar@tau.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8629-1088
  2. Malka Attar-Lamdar

    Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Mukesh Chourasia

    Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria G Cascio

    Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Avital Shurki

    Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Joseph Tam

    Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0948-0093
  7. Moshe Neuman

    Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Neta Rimmerman

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Zvi Vogel

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  10. Arie Shteyer

    Department of Oral and Maxillofacial Surgery, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  11. Roger G Pertwee

    Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Andreas Zimmer

    Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Natalya Kogan

    Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  14. Itai Bab

    Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  15. Yankel Gabet

    Department of Anatomy and Anthropology, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    yankel@tauex.tau.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7494-0631

Funding

Israel Science Foundation (1822/12)

  • Yankel Gabet

Israel Science Foundation (1367/12)

  • Yankel Gabet

Israel Science Foundation (1086/17)

  • Yankel Gabet

American Society for Bone and Mineral Research (Gap award)

  • Yankel Gabet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals - C57BL/6J mice were used in all experiments. All procedures involving animals were carried out in accordance with the institutional guidelines and were approved by the Institutional Animal Care and Use Committee of Tel Aviv University (permit number M-14-092) and the Hebrew University of Jerusalem (permit number MD-12-13458-3). Cnr2 knockout (Cnr2-/-) were generated and shipped from the University of Bonn (Germany) and bred in the respective animal facilities at the Hebrew University and Tel Aviv University (SPF unit).

Human subjects: Human osteoblasts - The cells were obtained from patients undergoing total hip replacement (Helsinki ethics approval 0063-12-TLV).Human serum - The protocol was designed in accordance the institutional guidelines and with the approval of the Institutional Research Committee for Human Studies of the Hebrew University-Hadassah Medical Centre.We declare that a written informed consent was received from all participants prior to inclusion in this study.

Copyright

© 2022, Raphael-Mizrahi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,077
    views
  • 256
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bitya Raphael-Mizrahi
  2. Malka Attar-Lamdar
  3. Mukesh Chourasia
  4. Maria G Cascio
  5. Avital Shurki
  6. Joseph Tam
  7. Moshe Neuman
  8. Neta Rimmerman
  9. Zvi Vogel
  10. Arie Shteyer
  11. Roger G Pertwee
  12. Andreas Zimmer
  13. Natalya Kogan
  14. Itai Bab
  15. Yankel Gabet
(2022)
Osteogenic growth peptide is a potent anti-inflammatory and bone preserving hormone via cannabinoid receptor type 2
eLife 11:e65834.
https://doi.org/10.7554/eLife.65834

Share this article

https://doi.org/10.7554/eLife.65834

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.