Whole-organism eQTL mapping at cellular resolution with single-cell sequencing

  1. Eyal Ben-David  Is a corresponding author
  2. James Boocock
  3. Longhua Guo
  4. Stefan Zdraljevic
  5. Joshua S Bloom  Is a corresponding author
  6. Leonid Kruglyak  Is a corresponding author
  1. The Hebrew University of Jerusalem, Israel
  2. University of California, Los Angeles, United States

Abstract

Genetic regulation of gene expression underlies variation in disease risk and other complex traits. The effect of expression quantitative trait loci (eQTLs) varies across cell types; however, the complexity of mammalian tissues makes studying cell-type eQTLs highly challenging. We developed a novel approach in the model nematode Caenorhabditis elegans that uses single cell RNA sequencing to map eQTLs at cellular resolution in a single one-pot experiment. We mapped eQTLs across cell types in an extremely large population of genetically distinct C. elegans individuals. We found cell-type-specific trans-eQTL hotspots that affect the expression of core pathways in the relevant cell types. Finally, we found single-cell-specific eQTL effects in the nervous system, including an eQTL with opposite effects in two individual neurons. Our results show that eQTL effects can be specific down to the level of single cells.

Data availability

Raw sequencing data are available under NCBI bioproject PRJNA658829.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Eyal Ben-David

    Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
    For correspondence
    eyal.bendavid@mail.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0514-0400
  2. James Boocock

    Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Longhua Guo

    Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Stefan Zdraljevic

    Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Joshua S Bloom

    Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    jbloom@mednet.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7241-1648
  6. Leonid Kruglyak

    Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    LKruglyak@mednet.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8065-3057

Funding

National Human Genome Research Institute (K99-HG010369)

  • Eyal Ben-David

National Human Genome Research Institute (R01-HG004321)

  • Leonid Kruglyak

Howard Hughes Medical Institute (Investigator award)

  • Leonid Kruglyak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Ben-David et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,990
    views
  • 470
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eyal Ben-David
  2. James Boocock
  3. Longhua Guo
  4. Stefan Zdraljevic
  5. Joshua S Bloom
  6. Leonid Kruglyak
(2021)
Whole-organism eQTL mapping at cellular resolution with single-cell sequencing
eLife 10:e65857.
https://doi.org/10.7554/eLife.65857

Share this article

https://doi.org/10.7554/eLife.65857

Further reading

    1. Genetics and Genomics
    Jongkeun Park, WonJong Choi ... Dongwan Hong
    Research Article

    An unprecedented amount of SARS-CoV-2 data has been accumulated compared with previous infectious diseases, enabling insights into its evolutionary process and more thorough analyses. This study investigates SARS-CoV-2 features as it evolved to evaluate its infectivity. We examined viral sequences and identified the polarity of amino acids in the receptor binding motif (RBM) region. We detected an increased frequency of amino acid substitutions to lysine (K) and arginine (R) in variants of concern (VOCs). As the virus evolved to Omicron, commonly occurring mutations became fixed components of the new viral sequence. Furthermore, at specific positions of VOCs, only one type of amino acid substitution and a notable absence of mutations at D467 were detected. We found that the binding affinity of SARS-CoV-2 lineages to the ACE2 receptor was impacted by amino acid substitutions. Based on our discoveries, we developed APESS, an evaluation model evaluating infectivity from biochemical and mutational properties. In silico evaluation using real-world sequences and in vitro viral entry assays validated the accuracy of APESS and our discoveries. Using Machine Learning, we predicted mutations that had the potential to become more prominent. We created AIVE, a web-based system, accessible at https://ai-ve.org to provide infectivity measurements of mutations entered by users. Ultimately, we established a clear link between specific viral properties and increased infectivity, enhancing our understanding of SARS-CoV-2 and enabling more accurate predictions of the virus.

    1. Cell Biology
    2. Genetics and Genomics
    Showkat Ahmad Dar, Sulochan Malla ... Manolis Maragkakis
    Research Article

    Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5ʹ end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5ʹ end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.