R7 photoreceptor axon targeting depends on the relative levels of lost and found expression in R7 and its synaptic partners

  1. Jessica Douthit
  2. Ariel Hairston
  3. Gina Lee
  4. Carolyn Arlene Morrison
  5. Isabel Holguera
  6. Jessica E Treisman  Is a corresponding author
  1. NYU School of Medicine, United States
  2. NYU, United States

Abstract

As neural circuits form, growing processes select the correct synaptic partners through interactions between cell surface proteins. The presence of such proteins on two neuronal processes may lead to either adhesion or repulsion; however, the consequences of mismatched expression have rarely been explored. Here we show that the Drosophila CUB-LDL protein Lost and found (Loaf) is required in the UV-sensitive R7 photoreceptor for normal axon targeting only when Loaf is also present in its synaptic partners. Although targeting occurs normally in loaf mutant animals, removing loaf from photoreceptors or expressing it in their postsynaptic neurons Tm5a/b or Dm9 in a loaf mutant causes mistargeting of R7 axons. Loaf localizes primarily to intracellular vesicles including endosomes. We propose that Loaf regulates the trafficking or function of one or more cell surface proteins, and an excess of these proteins on the synaptic partners of R7 prevents the formation of stable connections.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jessica Douthit

    Skirball Institute/Cell Biology, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ariel Hairston

    Skirball Institute/Cell Biology, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gina Lee

    Skirball Institute/Cell Biology, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Carolyn Arlene Morrison

    Skirball Institute/Cell Biology, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Isabel Holguera

    Biology, NYU, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2796-6596
  6. Jessica E Treisman

    Skirball Institute/Cell Biology, NYU School of Medicine, New York, United States
    For correspondence
    Jessica.Treisman@med.nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7453-107X

Funding

National Institutes of Health (R01GM089799)

  • Jessica E Treisman

National Institutes of Health (R01NS112211)

  • Jessica E Treisman

National Institutes of Health (F31EY025568)

  • Jessica Douthit

Human Frontier Science Program ((LT000757/2017)

  • Isabel Holguera

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Publication history

  1. Received: December 18, 2020
  2. Accepted: May 17, 2021
  3. Accepted Manuscript published: May 18, 2021 (version 1)
  4. Version of Record published: June 15, 2021 (version 2)

Copyright

© 2021, Douthit et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 901
    Page views
  • 92
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jessica Douthit
  2. Ariel Hairston
  3. Gina Lee
  4. Carolyn Arlene Morrison
  5. Isabel Holguera
  6. Jessica E Treisman
(2021)
R7 photoreceptor axon targeting depends on the relative levels of lost and found expression in R7 and its synaptic partners
eLife 10:e65895.
https://doi.org/10.7554/eLife.65895

Further reading

    1. Developmental Biology
    2. Neuroscience
    Miguel Ramirez et al.
    Tools and Resources

    We have identified active enhancers in the mouse cerebellum at embryonic and postnatal stages which provides a view of novel enhancers active during cerebellar development. The majority of cerebellar enhancers have dynamic activity between embryonic and postnatal development. Cerebellar enhancers were enriched for neural transcription factor binding sites with temporally specific expression. Putative gene targets displayed spatially restricted expression patterns, indicating cell-type specific expression regulation. Functional analysis of target genes indicated that enhancers regulate processes spanning several developmental epochs such as specification, differentiation and maturation. We use these analyses to discover one novel regulator and one novel marker of cerebellar development: Bhlhe22 and Pax3, respectively. We identified an enrichment of de novo mutations and variants associated with autism spectrum disorder in cerebellar enhancers. Furthermore, by comparing our data with relevant brain development ENCODE histone profiles and cerebellar single-cell datasets we have been able to generalize and expand on the presented analyses, respectively. We have made the results of our analyses available online in the Developing Mouse Cerebellum Enhancer Atlas (https://goldowitzlab.shinyapps.io/developing_mouse_cerebellum_enhancer_atlas/), where our dataset can be efficiently queried, curated and exported by the scientific community to facilitate future research efforts. Our study provides a valuable resource for studying the dynamics of gene expression regulation by enhancers in the developing cerebellum and delivers a rich dataset of novel gene-enhancer associations providing a basis for future in-depth studies in the cerebellum.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Sobhika Agarwala et al.
    Research Article

    The blood system is supported by hematopoietic stem and progenitor cells (HSPCs) found in a specialized microenvironment called the niche. Many different niche cell types support HSPCs, however how they interact and their ultrastructure has been difficult to define. Here we show that single endogenous HSPCs can be tracked by light microscopy, then identified by serial block-face scanning electron microscopy (SBEM) at multiscale levels. Using the zebrafish larval kidney marrow (KM) niche as a model, we followed single fluorescently-labeled HSPCs by light sheet microscopy, then confirmed their exact location in a 3D SBEM dataset. We found a variety of different configurations of HSPCs and surrounding niche cells, suggesting there could be functional heterogeneity in sites of HSPC lodgement. Our approach also allowed us to identify dopamine beta-hydroxylase (dbh) positive ganglion cells as a previously uncharacterized functional cell type in the HSPC niche. By integrating multiple imaging modalities, we could resolve the ultrastructure of single rare cells deep in live tissue and define all contacts between an HSPC and its surrounding niche cell types.