SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation

  1. David W Sanders
  2. Chanelle C Jumper
  3. Paul J Ackerman
  4. Dan Bracha
  5. Anita Donlic
  6. Hahn Kim
  7. Devin Kenney
  8. Ivan Castello-Serrano
  9. Saori Suzuki
  10. Tomokazu Tamura
  11. Alexander H Tavares
  12. Mohsan Saeed
  13. Alex S Holehouse
  14. Alexander Ploss
  15. Ilya Levental
  16. Florian Douam
  17. Robert F Padera
  18. Bruce D Levy
  19. Clifford P Brangwynne  Is a corresponding author
  1. Princeton University, United States
  2. Boston University, United States
  3. University of Virginia, United States
  4. Washington University School of Medicine, United States
  5. Harvard Medical School, United States

Abstract

Many enveloped viruses induce multinucleated cells (syncytia), reflective of membrane fusion events caused by the same machinery that underlies viral entry. These syncytia are thought to facilitate replication and evasion of the host immune response. Here, we report that co-culture of human cells expressing the receptor ACE2 with cells expressing SARS-CoV-2 spike, results in synapse-like intercellular contacts that initiate cell-cell fusion, producing syncytia resembling those we identify in lungs of COVID-19 patients. To assess the mechanism of spike/ACE2-driven membrane fusion, we developed a microscopy-based, cell-cell fusion assay to screen ~6000 drugs and >30 spike variants. Together with quantitative cell biology approaches, the screen reveals an essential role for biophysical aspects of the membrane, particularly cholesterol-rich regions, in spike-mediated fusion, which extends to replication-competent SARS-CoV-2 isolates. Our findings potentially provide a molecular basis for positive outcomes reported in COVID-19 patients taking statins, and suggest new strategies for therapeutics targeting the membrane of SARS-CoV-2 and other fusogenic viruses.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files with the exception of raw imaging data (>400,000 Nikon ND2 files), which is not feasible to post online given its massive size (>1.5 TB). This data is available from the lead contact upon request, assuming the interested party provides a server with sufficient storage capacity. Raw data (computed fusion scores) from the drug repurposing screen is available in Supplemental File 1; bioinformatics, Supplemental File 3.

Article and author information

Author details

  1. David W Sanders

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  2. Chanelle C Jumper

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  3. Paul J Ackerman

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  4. Dan Bracha

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  5. Anita Donlic

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  6. Hahn Kim

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  7. Devin Kenney

    Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  8. Ivan Castello-Serrano

    University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  9. Saori Suzuki

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5233-6604
  10. Tomokazu Tamura

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1395-6610
  11. Alexander H Tavares

    Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  12. Mohsan Saeed

    Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  13. Alex S Holehouse

    Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, United States
    Competing interests
    Alex S Holehouse, A.S.H. is a consultant for Dewpoint Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4155-5729
  14. Alexander Ploss

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9322-7252
  15. Ilya Levental

    University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  16. Florian Douam

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  17. Robert F Padera

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  18. Bruce D Levy

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  19. Clifford P Brangwynne

    Princeton University, Princeton, United States
    For correspondence
    cbrangwy@princeton.edu
    Competing interests
    Clifford P Brangwynne, C.P.B. is a scientific founder and consultant for Nereid Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1350-9960

Funding

National Institute of General Medical Sciences (GM095467)

  • Bruce D Levy

National Heart, Lung, and Blood Institute (HL122531)

  • Bruce D Levy

National Institute of General Medical Sciences (GM134949)

  • Ilya Levental

National Institute of General Medical Sciences (GM124072)

  • Ilya Levental

Howard Hughes Medical Institute

  • Clifford P Brangwynne

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. William A Prinz, National Institutes of Health, United States

Ethics

Human subjects: Human pathology studies were performed with the approval of the Institutional Review Board at Brigham and Women's Hospital. Clinical autopsies with full anatomic dissection were performed on SARS-CoV-2 decedents by a board-certified anatomic pathologist (RFP) with appropriateinfectious precautions.

Version history

  1. Received: December 21, 2020
  2. Accepted: April 1, 2021
  3. Accepted Manuscript published: April 23, 2021 (version 1)
  4. Version of Record published: May 7, 2021 (version 2)

Copyright

© 2021, Sanders et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 18,484
    views
  • 1,706
    downloads
  • 157
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David W Sanders
  2. Chanelle C Jumper
  3. Paul J Ackerman
  4. Dan Bracha
  5. Anita Donlic
  6. Hahn Kim
  7. Devin Kenney
  8. Ivan Castello-Serrano
  9. Saori Suzuki
  10. Tomokazu Tamura
  11. Alexander H Tavares
  12. Mohsan Saeed
  13. Alex S Holehouse
  14. Alexander Ploss
  15. Ilya Levental
  16. Florian Douam
  17. Robert F Padera
  18. Bruce D Levy
  19. Clifford P Brangwynne
(2021)
SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation
eLife 10:e65962.
https://doi.org/10.7554/eLife.65962

Share this article

https://doi.org/10.7554/eLife.65962

Further reading

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.

    1. Cell Biology
    2. Computational and Systems Biology
    Trine Line Hauge Okholm, Andreas Bjerregaard Kamstrup ... Christian Kroun Damgaard
    Research Article

    Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.