Neural mechanisms of modulations of empathy and altruism by beliefs of others' pain

  1. Taoyu Wu
  2. Shihui Han  Is a corresponding author
  1. Peking University, China

Abstract

Perceived cues signaling others' pain induce empathy which in turn motivates altruistic behavior toward those who appear suffering. This perception-emotion-behavior reactivity is the core of human altruism but does not always occur in real life situations. Here, by integrating behavioral and multimodal neuroimaging measures, we investigate neural mechanisms underlying modulations of empathy and altruistic behavior by beliefs of others' pain. We show evidence that lack of beliefs of others' pain reduces subjective estimation of others' painful feelings and decreases monetary donations to those who show pain expressions. Moreover, lack of beliefs of others' pain attenuates neural responses to their pain expressions within 200 ms after face onset and modulates neural responses to others' pain in the insular, post-central, and frontal cortices. Our findings suggest that beliefs of others’ pain provide a cognitive basis of human empathy and altruism and unravel the intermediate neural mechanisms.

Data availability

Source data files have been provided for Figures 1-6 and Appdendix 1 Figure 1.

Article and author information

Author details

  1. Taoyu Wu

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Shihui Han

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    For correspondence
    shan@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3350-5104

Funding

Ministry of Science and Technology of China (2019YFA0707103)

  • Shihui Han

Natural Science Foundation of China (31871134)

  • Shihui Han

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was approved by the local Research Ethics Committee of the School of Psychological and Cognitive Sciences, Peking University. All participants provided written informed consent after the experimental procedure had been fully explained. Participants were reminded of their right to withdraw at any time during the study.

Copyright

© 2021, Wu & Han

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,323
    views
  • 365
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Taoyu Wu
  2. Shihui Han
(2021)
Neural mechanisms of modulations of empathy and altruism by beliefs of others' pain
eLife 10:e66043.
https://doi.org/10.7554/eLife.66043

Share this article

https://doi.org/10.7554/eLife.66043

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zachary H Williams, Alvaro Dafonte Imedio ... Welkin E Johnson
    Research Article

    HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact ORFs, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3' LTR, derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8 derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec-RcRE export system was replaced by a CTE mechanism.

    1. Evolutionary Biology
    Deng Wang, Yaqin Qiang ... Jian Han
    Research Article

    Extant ecdysozoans (moulting animals) are represented by a great variety of soft-bodied or articulated organisms that may or may not have appendages. However, controversies remain about the vermiform nature (i.e. elongated and tubular) of their ancestral body plan. We describe here Beretella spinosa gen. et sp. nov. a tiny (maximal length 3 mm) ecdysozoan from the lowermost Cambrian, Yanjiahe Formation, South China, characterized by an unusual sack-like appearance, single opening, and spiny ornament. Beretella spinosa gen. et sp. nov has no equivalent among animals, except Saccorhytus coronarius, also from the basal Cambrian. Phylogenetic analyses resolve both fossil species as a sister group (Saccorhytida) to all known Ecdysozoa, thus suggesting that ancestral ecdysozoans may have been non-vermiform animals. Saccorhytids are likely to represent an early off-shot along the stem-line Ecdysozoa. Although it became extinct during the Cambrian, this animal lineage provides precious insight into the early evolution of Ecdysozoa and the nature of the earliest representatives of the group.