Neural mechanisms of modulations of empathy and altruism by beliefs of others' pain

  1. Taoyu Wu
  2. Shihui Han  Is a corresponding author
  1. Peking University, China

Abstract

Perceived cues signaling others' pain induce empathy which in turn motivates altruistic behavior toward those who appear suffering. This perception-emotion-behavior reactivity is the core of human altruism but does not always occur in real life situations. Here, by integrating behavioral and multimodal neuroimaging measures, we investigate neural mechanisms underlying modulations of empathy and altruistic behavior by beliefs of others' pain. We show evidence that lack of beliefs of others' pain reduces subjective estimation of others' painful feelings and decreases monetary donations to those who show pain expressions. Moreover, lack of beliefs of others' pain attenuates neural responses to their pain expressions within 200 ms after face onset and modulates neural responses to others' pain in the insular, post-central, and frontal cortices. Our findings suggest that beliefs of others’ pain provide a cognitive basis of human empathy and altruism and unravel the intermediate neural mechanisms.

Data availability

Source data files have been provided for Figures 1-6 and Appdendix 1 Figure 1.

Article and author information

Author details

  1. Taoyu Wu

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Shihui Han

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    For correspondence
    shan@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3350-5104

Funding

Ministry of Science and Technology of China (2019YFA0707103)

  • Shihui Han

Natural Science Foundation of China (31871134)

  • Shihui Han

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was approved by the local Research Ethics Committee of the School of Psychological and Cognitive Sciences, Peking University. All participants provided written informed consent after the experimental procedure had been fully explained. Participants were reminded of their right to withdraw at any time during the study.

Copyright

© 2021, Wu & Han

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,698
    views
  • 424
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Taoyu Wu
  2. Shihui Han
(2021)
Neural mechanisms of modulations of empathy and altruism by beliefs of others' pain
eLife 10:e66043.
https://doi.org/10.7554/eLife.66043

Share this article

https://doi.org/10.7554/eLife.66043

Further reading

    1. Evolutionary Biology
    Mauna R Dasari, Kimberly E Roche ... Elizabeth A Archie
    Research Article

    Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here, we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting ‘microbiome clock’ predicts host chronological age. Deviations from the clock’s predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual’s ‘microbiome age’ does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.

    1. Evolutionary Biology
    Julia D Sigwart, Yunlong Li ... Jin Sun
    Research Article

    A major question in animal evolution is how genotypic and phenotypic changes are related, and another is when and whether ancient gene order is conserved in living clades. Chitons, the molluscan class Polyplacophora, retain a body plan and general morphology apparently little changed since the Palaeozoic. We present a comparative analysis of five reference quality genomes, including four de novo assemblies, covering all major chiton clades, and an updated phylogeny for the phylum. We constructed 20 ancient molluscan linkage groups (MLGs) and show that these are relatively conserved in bivalve karyotypes, but in chitons they are subject to re-ordering, rearrangement, fusion, or partial duplication and vary even between congeneric species. The largest number of novel fusions is in the most plesiomorphic clade Lepidopleurida, and the chitonid Liolophura japonica has a partial genome duplication, extending the occurrence of large-scale gene duplication within Mollusca. The extreme and dynamic genome rearrangements in this class stands in contrast to most other animals, demonstrating that chitons have overcome evolutionary constraints acting on other animal groups. The apparently conservative phenome of chitons belies rapid and extensive changes in genome.