Endothelial junctional membrane protrusions serve as hotspots for neutrophil transmigration

  1. Janine JG Arts
  2. Eike K Mahlandt
  3. Max Grönloh
  4. Lilian Schimmel
  5. Ivar Noordstra
  6. Emma Gordon
  7. Abraham CI van Steen
  8. Simon Tol
  9. Barbara Walzog
  10. Jos van Rijssel
  11. Martijn A Nolte
  12. Marten Postma
  13. Satya Khuon
  14. John M Heddleston
  15. Eric Wait
  16. Teng Leong Chew
  17. Mark Winter
  18. Eloi Montanez
  19. Joachim Goedhart
  20. Jaap D van Buul  Is a corresponding author
  1. Sanquin Research and Landsteiner Laboratory, Netherlands
  2. SILS/UvA, Netherlands
  3. Uppsala University, Sweden
  4. Ludwig-Maximilians-Universität München, Germany
  5. Janelia Research Campus, United States
  6. Howard Hughes Medical Institute, United States
  7. University of Haifa, Israel
  8. University of Barcelona, Spain

Abstract

Upon inflammation, leukocytes rapidly transmigrate across the endothelium to enter the inflamed tissue. Evidence accumulates that leukocytes use preferred exit sites, though it is not yet clear how these hotspots in the endothelium are defined and how they are recognized by the leukocyte. Using lattice light sheet microscopy, we discovered that leukocytes prefer endothelial membrane protrusions at cell junctions for transmigration. Phenotypically, these junctional membrane protrusions are present in an asymmetric manner, meaning that one endothelial cell shows the protrusion and the adjacent one does not. Consequently, leukocytes cross the junction by migrating underneath the protruding endothelial cell. These protrusions depend on Rac1 activity and by using a photo-activatable Rac1 probe, we could artificially generate local exit-sites for leukocytes. Overall, we have discovered a new mechanism that uses local induced junctional membrane protrusions to facilitate/steer the leukocyte escape/exit from inflamed vessel walls.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files will be provided for Figures 4 and 6.

Article and author information

Author details

  1. Janine JG Arts

    Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Eike K Mahlandt

    Molecular Cytology, SILS/UvA, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Max Grönloh

    Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0109-8225
  4. Lilian Schimmel

    Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0569-0464
  5. Ivar Noordstra

    Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Emma Gordon

    Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Abraham CI van Steen

    Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Simon Tol

    Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Barbara Walzog

    Ludwig-Maximilians-Universität München, Planegg- Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Jos van Rijssel

    Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8077-1371
  11. Martijn A Nolte

    Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  12. Marten Postma

    Molecular Cytology, SILS/UvA, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Satya Khuon

    Advanced Imaging Center, Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. John M Heddleston

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Eric Wait

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Teng Leong Chew

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Mark Winter

    Department of Marine Sciences, University of Haifa, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1180-1957
  18. Eloi Montanez

    Department of Physiological Sciences, University of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4059-5056
  19. Joachim Goedhart

    Molecular Cytology, SILS/UvA, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0630-3825
  20. Jaap D van Buul

    Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
    For correspondence
    j.vanbuul@sanquin.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0054-7949

Funding

LSBR (1649)

  • Abraham CI van Steen

NWO-ZonMW Vici (91819632)

  • Max Grönloh
  • Jaap D van Buul

Spanish Ministry of Science, Innovation and Universities (PID2019-108902GB-I00)

  • Eloi Montanez

NWO ALW-OPEN (ALWOP.306)

  • Eike K Mahlandt

Deutsche Forschungsgemeinschaft (SFB 914/A02)

  • Barbara Walzog

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carla V Rothlin, Yale School of Medicine, United States

Ethics

Animal experimentation: All animal experiments were conducted in accordance with German federal animal protection laws and were approved by the Bavarian Government (Regierung von Oberbayern, Munich, Germany)

Version history

  1. Received: December 24, 2020
  2. Preprint posted: January 21, 2021 (view preprint)
  3. Accepted: August 22, 2021
  4. Accepted Manuscript published: August 25, 2021 (version 1)
  5. Version of Record published: September 13, 2021 (version 2)

Copyright

© 2021, Arts et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,776
    Page views
  • 385
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Janine JG Arts
  2. Eike K Mahlandt
  3. Max Grönloh
  4. Lilian Schimmel
  5. Ivar Noordstra
  6. Emma Gordon
  7. Abraham CI van Steen
  8. Simon Tol
  9. Barbara Walzog
  10. Jos van Rijssel
  11. Martijn A Nolte
  12. Marten Postma
  13. Satya Khuon
  14. John M Heddleston
  15. Eric Wait
  16. Teng Leong Chew
  17. Mark Winter
  18. Eloi Montanez
  19. Joachim Goedhart
  20. Jaap D van Buul
(2021)
Endothelial junctional membrane protrusions serve as hotspots for neutrophil transmigration
eLife 10:e66074.
https://doi.org/10.7554/eLife.66074

Share this article

https://doi.org/10.7554/eLife.66074

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.