Augmentation of progestin signaling rescues testis organization and spermatogenesis in zebrafish with the depletion of androgen signaling

  1. Gang Zhai
  2. Tingting Shu
  3. Guangqing Yu
  4. Haipei Tang
  5. Chuang Shi
  6. Jingyi Jia
  7. Qiyong Lou
  8. Xiangyan Dai
  9. Xia Jin
  10. Jiangyan He
  11. Wuhan Xiao
  12. Xiaochun Liu
  13. Zhan Yin  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. Sun Yat-sen University, China
  3. Institute of hydrobiology, Chinese academy of sciences, China
  4. Huazhong Agriculture University, China
  5. Southwest University, China

Abstract

Disruption of androgen signaling is known to cause testicular malformation and defective spermatogenesis in zebrafish. However, knockout of cyp17a1, a key enzyme responsible for the androgen synthesis, in ar-/- male zebrafish paradoxically causes testicular hypertrophy and enhanced spermatogenesis. Because Cyp17a1 plays key roles in hydroxylation of pregnenolone and progesterone (P4), and convert of 17α-hydroxypregnenolone to dehydroepiandrosterone and 17α-hydroxyprogesterone to androstenedione, we hypothesize that the unexpected phenotype in cyp17a1-/-;androgen receptor (ar)-/- zebrafish may be mediated through an augmentation of progestin/nuclear progestin receptor (nPgr) signaling. In support of this hypothesis, we show that knockout of cyp17a1 leads to accumulation of 17α,20β-dihydroxy-4-pregnen-3-one (DHP) and P4. Further, administration of progestin, a synthetic DHP mimetic, is sufficient to rescue testicular development and spermatogenesis in ar-/- zebrafish, whereas knockout of npgr abolishes the rescue effect of cyp17a1-/- in the cyp17a1-/-;ar-/- double mutant. Analyses of the transcriptomes among the mutants with defective testicular organization and spermatogenesis (ar-/-, ar-/-;npgr-/- and cyp17a-/-;ar-/-;npgr-/-), those with normal phenotype (Control and cyp17a1-/-), and rescued phenotype (cyp17a1-/-;ar-/-) reveal a common link between a down-regulated expression of insl3 and its related downstream genes in cyp17a-/-;ar-/-;npgr-/- zebrafish. Taken together, our data suggest that genetic or pharmacological augmentation of the progestin/nPgr pathway is sufficient to restore testis organization and spermatogenesis in zebrafish with the depletion of androgen signaling.

Data availability

The knockout fish and genes involved in this study have been cited and clearly listed in the references.

Article and author information

Author details

  1. Gang Zhai

    State key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Tingting Shu

    State key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3020-9329
  3. Guangqing Yu

    State key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Haipei Tang

    School of Life Sciences, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chuang Shi

    State key Laboratory of Freshwater Ecology and Biotechnology, Institute of hydrobiology, Chinese academy of sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jingyi Jia

    College of Fisheries, Huazhong Agriculture University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Qiyong Lou

    State key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Xiangyan Dai

    School of Life Science, Southwest University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Xia Jin

    Molecular and Cellular Biology of Aquatic Organisms, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Jiangyan He

    Molecular and Cellular Biology of Aquatic Organisms, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Wuhan Xiao

    Molecular and Cellular Biology of Aquatic Organisms, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2978-0616
  12. Xiaochun Liu

    School of Life Sciences, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Zhan Yin

    Molecular and Cellular Biology of Aquatic Organisms, Chinese Academy of Sciences, Wuhan, China
    For correspondence
    zyin@ihb.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7969-3967

Funding

National Key Research and Development Program of China (2018YFD0900205)

  • Zhan Yin

Pilot Program A Project from the Chinese Academy of Sciences (XDA24010206)

  • Zhan Yin

National Natural Science Foundation of China (31972779)

  • Gang Zhai

National Natural Science Foundation of China (31530077)

  • Zhan Yin

National Natural Science Foundation of China (31702027)

  • Xiangyan Dai

Youth Innovation Promotion Association of CAS (2020336)

  • Gang Zhai

State Key Laboratory of Freshwater Ecology and Biotechnology (2016FBZ05)

  • Zhan Yin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: All fish experiments were conducted in accordance with the Guiding Principles for the Care and Use of Laboratory Animals and were approved by the Institute of Hydrobiology, Chinese Academy of Sciences (Approval ID: IHB 2013724).

Copyright

© 2022, Zhai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,371
    views
  • 345
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gang Zhai
  2. Tingting Shu
  3. Guangqing Yu
  4. Haipei Tang
  5. Chuang Shi
  6. Jingyi Jia
  7. Qiyong Lou
  8. Xiangyan Dai
  9. Xia Jin
  10. Jiangyan He
  11. Wuhan Xiao
  12. Xiaochun Liu
  13. Zhan Yin
(2022)
Augmentation of progestin signaling rescues testis organization and spermatogenesis in zebrafish with the depletion of androgen signaling
eLife 11:e66118.
https://doi.org/10.7554/eLife.66118

Share this article

https://doi.org/10.7554/eLife.66118

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Augusto Berrocal, Nicholas C Lammers ... Michael B Eisen
    Research Advance

    Transcription often occurs in bursts as gene promoters switch stochastically between active and inactive states. Enhancers can dictate transcriptional activity in animal development through the modulation of burst frequency, duration, or amplitude. Previous studies observed that different enhancers can achieve a wide range of transcriptional outputs through the same strategies of bursting control. For example, in Berrocal et al., 2020, we showed that despite responding to different transcription factors, all even-skipped enhancers increase transcription by upregulating burst frequency and amplitude while burst duration remains largely constant. These shared bursting strategies suggest that a unified molecular mechanism constraints how enhancers modulate transcriptional output. Alternatively, different enhancers could have converged on the same bursting control strategy because of natural selection favoring one of these particular strategies. To distinguish between these two scenarios, we compared transcriptional bursting between endogenous and ectopic gene expression patterns. Because enhancers act under different regulatory inputs in ectopic patterns, dissimilar bursting control strategies between endogenous and ectopic patterns would suggest that enhancers adapted their bursting strategies to their trans-regulatory environment. Here, we generated ectopic even-skipped transcription patterns in fruit fly embryos and discovered that bursting strategies remain consistent in endogenous and ectopic even-skipped expression. These results provide evidence for a unified molecular mechanism shaping even-skipped bursting strategies and serve as a starting point to uncover the realm of strategies employed by other enhancers.

    1. Developmental Biology
    2. Genetics and Genomics
    Ignacy Czajewski, Bijayalaxmi Swain ... Daan MF van Aalten
    Research Article Updated

    O-GlcNAcylation is an essential intracellular protein modification mediated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Recently, missense mutations in OGT have been linked to intellectual disability, indicating that this modification is important for the development and functioning of the nervous system. However, the processes that are most sensitive to perturbations in O-GlcNAcylation remain to be identified. Here, we uncover quantifiable phenotypes in the fruit fly Drosophila melanogaster carrying a patient-derived OGT mutation in the catalytic domain. Hypo-O-GlcNAcylation leads to defects in synaptogenesis and reduced sleep stability. Both these phenotypes can be partially rescued by genetically or chemically targeting OGA, suggesting that a balance of OGT/OGA activity is required for normal neuronal development and function.