Augmentation of progestin signaling rescues testis organization and spermatogenesis in zebrafish with the depletion of androgen signaling

  1. Gang Zhai
  2. Tingting Shu
  3. Guangqing Yu
  4. Haipei Tang
  5. Chuang Shi
  6. Jingyi Jia
  7. Qiyong Lou
  8. Xiangyan Dai
  9. Xia Jin
  10. Jiangyan He
  11. Wuhan Xiao
  12. Xiaochun Liu
  13. Zhan Yin  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. Sun Yat-sen University, China
  3. Institute of hydrobiology, Chinese academy of sciences, China
  4. Huazhong Agriculture University, China
  5. Southwest University, China

Abstract

Disruption of androgen signaling is known to cause testicular malformation and defective spermatogenesis in zebrafish. However, knockout of cyp17a1, a key enzyme responsible for the androgen synthesis, in ar-/- male zebrafish paradoxically causes testicular hypertrophy and enhanced spermatogenesis. Because Cyp17a1 plays key roles in hydroxylation of pregnenolone and progesterone (P4), and convert of 17α-hydroxypregnenolone to dehydroepiandrosterone and 17α-hydroxyprogesterone to androstenedione, we hypothesize that the unexpected phenotype in cyp17a1-/-;androgen receptor (ar)-/- zebrafish may be mediated through an augmentation of progestin/nuclear progestin receptor (nPgr) signaling. In support of this hypothesis, we show that knockout of cyp17a1 leads to accumulation of 17α,20β-dihydroxy-4-pregnen-3-one (DHP) and P4. Further, administration of progestin, a synthetic DHP mimetic, is sufficient to rescue testicular development and spermatogenesis in ar-/- zebrafish, whereas knockout of npgr abolishes the rescue effect of cyp17a1-/- in the cyp17a1-/-;ar-/- double mutant. Analyses of the transcriptomes among the mutants with defective testicular organization and spermatogenesis (ar-/-, ar-/-;npgr-/- and cyp17a-/-;ar-/-;npgr-/-), those with normal phenotype (Control and cyp17a1-/-), and rescued phenotype (cyp17a1-/-;ar-/-) reveal a common link between a down-regulated expression of insl3 and its related downstream genes in cyp17a-/-;ar-/-;npgr-/- zebrafish. Taken together, our data suggest that genetic or pharmacological augmentation of the progestin/nPgr pathway is sufficient to restore testis organization and spermatogenesis in zebrafish with the depletion of androgen signaling.

Data availability

The knockout fish and genes involved in this study have been cited and clearly listed in the references.

Article and author information

Author details

  1. Gang Zhai

    State key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Tingting Shu

    State key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3020-9329
  3. Guangqing Yu

    State key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Haipei Tang

    School of Life Sciences, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chuang Shi

    State key Laboratory of Freshwater Ecology and Biotechnology, Institute of hydrobiology, Chinese academy of sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jingyi Jia

    College of Fisheries, Huazhong Agriculture University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Qiyong Lou

    State key Laboratory of Freshwater Ecology and Biotechnology, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Xiangyan Dai

    School of Life Science, Southwest University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Xia Jin

    Molecular and Cellular Biology of Aquatic Organisms, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Jiangyan He

    Molecular and Cellular Biology of Aquatic Organisms, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Wuhan Xiao

    Molecular and Cellular Biology of Aquatic Organisms, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2978-0616
  12. Xiaochun Liu

    School of Life Sciences, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Zhan Yin

    Molecular and Cellular Biology of Aquatic Organisms, Chinese Academy of Sciences, Wuhan, China
    For correspondence
    zyin@ihb.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7969-3967

Funding

National Key Research and Development Program of China (2018YFD0900205)

  • Zhan Yin

Pilot Program A Project from the Chinese Academy of Sciences (XDA24010206)

  • Zhan Yin

National Natural Science Foundation of China (31972779)

  • Gang Zhai

National Natural Science Foundation of China (31530077)

  • Zhan Yin

National Natural Science Foundation of China (31702027)

  • Xiangyan Dai

Youth Innovation Promotion Association of CAS (2020336)

  • Gang Zhai

State Key Laboratory of Freshwater Ecology and Biotechnology (2016FBZ05)

  • Zhan Yin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: All fish experiments were conducted in accordance with the Guiding Principles for the Care and Use of Laboratory Animals and were approved by the Institute of Hydrobiology, Chinese Academy of Sciences (Approval ID: IHB 2013724).

Copyright

© 2022, Zhai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,362
    views
  • 343
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gang Zhai
  2. Tingting Shu
  3. Guangqing Yu
  4. Haipei Tang
  5. Chuang Shi
  6. Jingyi Jia
  7. Qiyong Lou
  8. Xiangyan Dai
  9. Xia Jin
  10. Jiangyan He
  11. Wuhan Xiao
  12. Xiaochun Liu
  13. Zhan Yin
(2022)
Augmentation of progestin signaling rescues testis organization and spermatogenesis in zebrafish with the depletion of androgen signaling
eLife 11:e66118.
https://doi.org/10.7554/eLife.66118

Share this article

https://doi.org/10.7554/eLife.66118

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Developmental Biology
    Michele Bertacchi, Gwendoline Maharaux ... Michèle Studer
    Research Article Updated

    The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.