Computational modeling of threat learning reveals links with anxiety and neuroanatomy in humans

  1. Rany Abend  Is a corresponding author
  2. Diana Burk
  3. Sonia G Ruiz
  4. Andrea L Gold
  5. Julia L Napoli
  6. Jennifer C Britton
  7. Kalina J Michalska
  8. Tomer Shechner
  9. Anderson M Winkler
  10. Ellen Leibenluft
  11. Daniel S Pine
  12. Bruno B Averbeck
  1. National Institute of Mental Health, United States
  2. Brown University, United States
  3. University of Miami, United States
  4. University of California, Riverside, United States
  5. University of Haifa, Israel

Abstract

Influential theories implicate variations in the mechanisms supporting threat learning in the severity of anxiety symptoms. We use computational models of associative learning in conjunction with structural imaging to explicate links among the mechanisms underlying threat learning, their neuroanatomical substrates, and anxiety severity in humans. We recorded skin-conductance data during a threat-learning task from individuals with and without anxiety disorders (N=251; 8-50 years; 116 females). Reinforcement-learning model variants quantified processes hypothesized to relate to anxiety: threat conditioning, threat generalization, safety learning, and threat extinction. We identified the best-fitting models for these processes and tested associations among latent learning parameters, whole-brain anatomy, and anxiety severity. Results indicate that greater anxiety severity related specifically to slower safety learning and slower extinction of response to safe stimuli. Nucleus accumbens gray-matter volume moderated learning-anxiety associations. Using a modeling approach, we identify computational mechanisms linking threat learning and anxiety severity and their neuroanatomical substrates.

Data availability

We cannot share the full dataset due to the NIH IRB requirements, which require participants to explicitly consent to their data being shared publicly. An important element in that is to protect patients who agree to participate in studies that relate to their psychopathology. Such consent was not acquired from most participants; as such, we cannot upload our complete dataset in its raw or deidentified form, or derivatives of the data, since we will be violating IRB protocols. Still, a subset of participants did consent to data sharing and we have uploaded their data as noted in the revised manuscript (https://github.com/rany-abend/threat_learning_eLife). Researchers interested in potentially acquiring access to the data could contact Dr. Daniel Pine (pined@mail.nih.gov), Chief of the Emotion and Development Branch at NIH, with a research proposal; as per IRB rules, the IRB may approve adding such researchers as Associate Investigators if a formal collaboration is initiated. No commercial use of the data is a lowed. The modeling and imaging analyses have now been uploaded in full as source code files.

Article and author information

Author details

  1. Rany Abend

    Emotion and Development Branch, National Institute of Mental Health, Bethesda, United States
    For correspondence
    rany.abend@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0022-3418
  2. Diana Burk

    Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sonia G Ruiz

    Emotion and Development Branch, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrea L Gold

    Department of Psychiatry and Human Behavior, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Julia L Napoli

    Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jennifer C Britton

    Department of Psychology, University of Miami, Coral Gables, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kalina J Michalska

    Department of Psychology, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Tomer Shechner

    Psychology Department, University of Haifa, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Anderson M Winkler

    Emotion and Development Branch, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ellen Leibenluft

    Emotion and Development Branch, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Daniel S Pine

    Emotion and Development Branch, National Institute of Mental Health, Besthesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Bruno B Averbeck

    Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3976-8565

Funding

National Institutes of Health (ZIAMH002781-15)

  • Daniel S Pine

National Institutes of Health (R00MH091183)

  • Jennifer C Britton

Brain and Behavior Research Foundation (28239)

  • Rany Abend

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Human Subjects: Yes Ethics Statement: Written informed consent was obtained from adult (greater than or equal to 18 years) participants as we l as parents, and written assent was obtained from youth. Procedures were approved by the NIMH Institutional Review Board (protocol 01-M-0192).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,234
    views
  • 392
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rany Abend
  2. Diana Burk
  3. Sonia G Ruiz
  4. Andrea L Gold
  5. Julia L Napoli
  6. Jennifer C Britton
  7. Kalina J Michalska
  8. Tomer Shechner
  9. Anderson M Winkler
  10. Ellen Leibenluft
  11. Daniel S Pine
  12. Bruno B Averbeck
(2022)
Computational modeling of threat learning reveals links with anxiety and neuroanatomy in humans
eLife 11:e66169.
https://doi.org/10.7554/eLife.66169

Share this article

https://doi.org/10.7554/eLife.66169

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Anna Cattani, Don B Arnold ... Nancy Kopell
    Research Article

    The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3–6 Hz), high theta (~6–12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.