Inflammation rapidly recruits mammalian GMP and MDP from bone marrow into regional lymphatics

  1. Juana Serrano-Lopez
  2. Shailaja Hegde
  3. Sachin Kumar
  4. Josefina Serrano
  5. Jing Fang
  6. Ashley M Wellendorf
  7. Paul A Roche
  8. Yamileth Rangel
  9. Leolene J Carrington
  10. Hartmut Geiger
  11. H Leighton Grimes
  12. Sanjiv Luther
  13. Ivan Maillard
  14. Joaquin Sanchez-Garcia
  15. Daniel T Starczynowski
  16. Jose A Cancelas  Is a corresponding author
  1. University of Cincinnati, United States
  2. Hospital Reina Sofia, United States
  3. National Institutes of Health/NCI, United States
  4. Hospital Reina Sofia, Spain
  5. University of Pennsylvania, United States
  6. University of Cincinnati College of Medicine, United States
  7. University of Lausanne, Switzerland

Abstract

Innate immune cellular effectors are actively consumed during systemic inflammation but the systemic traffic and the mechanisms that support their replenishment remain unknown. Here we demonstrate that acute systemic inflammation induces the emergent activation of a previously unrecognized system of rapid migration of granulocyte-macrophage progenitors and committed macrophage-dendritic progenitors, but not other progenitors or stem cells, from bone marrow (BM) to regional lymphatic capillaries. The progenitor traffic to the systemic lymphatic circulation is mediated by Ccl19/Ccr7 and is NFkB independent, Traf6/IkB-kinase/SNAP23 activation dependent, and is responsible for the secretion of pre-stored Ccl19 by a subpopulation of CD205+/CD172a+ conventional dendritic cells type 2 (cDC2) and upregulation of BM myeloid progenitor Ccr7 signaling. Mature myeloid Traf6 signaling is anti-inflammatory and necessary for lymph node (LN) myeloid cell development. This report unveils the existence and the mechanistic basis of a very early direct traffic of myeloid progenitors from BM to lymphatics during inflammation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Juana Serrano-Lopez

    Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shailaja Hegde

    Hoxworth Blood Center, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sachin Kumar

    Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Josefina Serrano

    Hematology, Hospital Reina Sofia, Cordoba, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jing Fang

    Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ashley M Wellendorf

    Hoxworth Blood Center, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Paul A Roche

    Experimental Immunology Branch, National Institutes of Health/NCI, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yamileth Rangel

    Hematology, Hospital Reina Sofia, Cordoba, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Leolene J Carrington

    Dept. of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7352-3270
  10. Hartmut Geiger

    University of Cincinnati College of Medicine, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5794-5430
  11. H Leighton Grimes

    University of Cincinnati College of Medicine, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Sanjiv Luther

    University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  13. Ivan Maillard

    Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Joaquin Sanchez-Garcia

    Hematology, Hospital Reina Sofia, Cordoba, Spain
    Competing interests
    The authors declare that no competing interests exist.
  15. Daniel T Starczynowski

    University of Cincinnati College of Medicine, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Jose A Cancelas

    Hoxworth Blood Center, University of Cincinnati, Cincinnati, United States
    For correspondence
    jose.cancelas@uc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1291-7233

Funding

National Institutes of Health (GM110628)

  • Jose A Cancelas

National Institutes of Health (DK124115)

  • Jose A Cancelas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol #2019-0041 of Cincinnati Children's Hospital.

Human subjects: Lymphadenopathies from patients were obtained through Institutional Review Board-approved protocols of the Hospital Reina Sofia (Cordoba, Spain), donor informed consent and legal tutor approval in the case of patients younger than 18 years old. Specimens were blindly analyzed through adjudication of unique identifiers.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,895
    views
  • 244
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juana Serrano-Lopez
  2. Shailaja Hegde
  3. Sachin Kumar
  4. Josefina Serrano
  5. Jing Fang
  6. Ashley M Wellendorf
  7. Paul A Roche
  8. Yamileth Rangel
  9. Leolene J Carrington
  10. Hartmut Geiger
  11. H Leighton Grimes
  12. Sanjiv Luther
  13. Ivan Maillard
  14. Joaquin Sanchez-Garcia
  15. Daniel T Starczynowski
  16. Jose A Cancelas
(2021)
Inflammation rapidly recruits mammalian GMP and MDP from bone marrow into regional lymphatics
eLife 10:e66190.
https://doi.org/10.7554/eLife.66190

Share this article

https://doi.org/10.7554/eLife.66190

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Peng Li, Sree Pulugulla ... Warren J Leonard
    Short Report

    Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements. One such novel interaction was identified at CNS9, an upstream conserved noncoding region in the human IL10 gene, which harbors a non-canonical IKZF1 binding site. We confirmed the cooperative binding of JUN and IKZF1 and showed that the activity of an IL10-luciferase reporter construct in primary B and T cells depended on both this site and the AP1 binding site within this composite element. Overall, our findings reveal an unappreciated global association of IKZF1 and AP1 and establish SPICE as a valuable new pipeline for predicting novel transcription binding complexes.

    1. Immunology and Inflammation
    2. Medicine
    Edwin A Homan, Ankit Gilani ... James C Lo
    Short Report

    Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3ar1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.