Mutation analysis links angioimmunoblastic T-cell lymphoma to clonal hematopoiesis and smoking

  1. Shuhua Cheng
  2. Wei Zhang
  3. Giorgio Inghirami
  4. Wayne Tam  Is a corresponding author
  1. Weill Cornell Medicine, United States

Abstract

Background:

Although advance has been made in understanding the pathogenesis of mature T-cell neoplasms, the initiation and progression of angioimmunoblastic T cell lymphoma (AITL) and peripheral T cell lymphoma, not otherwise specified (PTCL-NOS), remains poorly understood. A subset of AITL/PTCL-NOS patients develop concomitant hematologic neoplasms (CHN), and a biomarker to predict this risk is lacking.

Methods:

We generated and analyzed the mutation profiles through 537-gene targeted sequencing of the primary tumors and matched bone marrow/peripheral blood samples in 25 patients with AITL and 2 with PTCL-NOS.

Results:

Clonal hematopoiesis (CH)-associated genomic alterations, found in 70.4% of the AITL/PTCL-NOS patients, were shared among CH and T-cell lymphoma, as well as concomitant myeloid neoplasms or diffuse large B-cell lymphoma (DLBCL) that developed before or after AITL. Aberrant AID/APOBEC activity-associated and tobacco smoking-associated mutational signatures were respectively enriched in the early CH-associated mutations and late non-CH associated mutations during AITL/PTCL-NOS development. Moreover, analysis showed that the presence of CH harboring ≥ 2 pathogenic TET2 variants with ≥ 15% of allele burden conferred higher risk for CHN (P = 0.0006, hazard ratio = 14.01, PPV=88.9%, NPV=92.1%).

Conclusion:

We provided genetic evidence that AITL/PTCL-NOS, CH, CHN can frequently arise from common mutated hematopoietic precursor clones. Our data also suggests smoking exposure as a potential risk factor for AITL/PTCL-NOS progression. These findings provide insights into the cell origin and etiology of AITL and PTCL-NOS and provide a novel stratification biomarker for CHN risk in AITL patients.

Funding:

R01 grant (CA194547) from the National Cancer Institute to WT.

Data availability

All relevant data are included in this manuscript and the supplementary files.

The following previously published data sets were used

Article and author information

Author details

  1. Shuhua Cheng

    Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Wei Zhang

    Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Giorgio Inghirami

    Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wayne Tam

    Weill Cornell Medicine, New York, United States
    For correspondence
    wtam@med.cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4283-0005

Funding

National Cancer Institute (R01 CA194547)

  • Wayne Tam

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Adam Olszewski, Brown University, United States

Ethics

Human subjects: This study was conducted in accordance with the Declaration of Helsinki regulations of the protocols approved by the Institutional Review Board of Weill Cornell Medicine, New York, USA. Written consent for use of the samples for research was obtained from patients or their guardians.(#0107004999)

Version history

  1. Preprint posted: November 26, 2020 (view preprint)
  2. Received: January 11, 2021
  3. Accepted: September 13, 2021
  4. Accepted Manuscript published: September 28, 2021 (version 1)
  5. Version of Record published: September 29, 2021 (version 2)

Copyright

© 2021, Cheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,208
    views
  • 212
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shuhua Cheng
  2. Wei Zhang
  3. Giorgio Inghirami
  4. Wayne Tam
(2021)
Mutation analysis links angioimmunoblastic T-cell lymphoma to clonal hematopoiesis and smoking
eLife 10:e66395.
https://doi.org/10.7554/eLife.66395

Share this article

https://doi.org/10.7554/eLife.66395

Further reading

    1. Cancer Biology
    Chenxi Gao, Huaibin Ge ... Jing Hu
    Research Article

    BRAFV600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a ‘just-right’ level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vil1-Cre;BRAFLSL-V600E/+;Ptk2fl/fl mice, Fak deletion maximized BRAFV600E’s oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a ‘just-right’ ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.

    1. Cancer Biology
    2. Computational and Systems Biology
    Marie Breeur, George Stepaniants ... Vivian Viallon
    Research Article

    Untargeted metabolomic profiling through liquid chromatography-mass spectrometry (LC-MS) measures a vast array of metabolites within biospecimens, advancing drug development, disease diagnosis, and risk prediction. However, the low throughput of LC-MS poses a major challenge for biomarker discovery, annotation, and experimental comparison, necessitating the merging of multiple datasets. Current data pooling methods encounter practical limitations due to their vulnerability to data variations and hyperparameter dependence. Here, we introduce GromovMatcher, a flexible and user-friendly algorithm that automatically combines LC-MS datasets using optimal transport. By capitalizing on feature intensity correlation structures, GromovMatcher delivers superior alignment accuracy and robustness compared to existing approaches. This algorithm scales to thousands of features requiring minimal hyperparameter tuning. Manually curated datasets for validating alignment algorithms are limited in the field of untargeted metabolomics, and hence we develop a dataset split procedure to generate pairs of validation datasets to test the alignments produced by GromovMatcher and other methods. Applying our method to experimental patient studies of liver and pancreatic cancer, we discover shared metabolic features related to patient alcohol intake, demonstrating how GromovMatcher facilitates the search for biomarkers associated with lifestyle risk factors linked to several cancer types.