Fast deep neural correspondence for tracking and identifying neurons in C. elegans using semi-synthetic training

  1. Xinwei Yu
  2. Matthew S Creamer
  3. Francesco Randi
  4. Anuj Kumar Sharma Ph.D.
  5. Scott W Linderman
  6. Andrew Michael Leifer  Is a corresponding author
  1. Princeton University, United States
  2. Stanford University, United States

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record published
  2. Accepted Manuscript published
  3. Accepted
  4. Received

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xinwei Yu
  2. Matthew S Creamer
  3. Francesco Randi
  4. Anuj Kumar Sharma Ph.D.
  5. Scott W Linderman
  6. Andrew Michael Leifer
(2021)
Fast deep neural correspondence for tracking and identifying neurons in C. elegans using semi-synthetic training
eLife 10:e66410.
https://doi.org/10.7554/eLife.66410

Share this article

https://doi.org/10.7554/eLife.66410