Fast deep neural correspondence for tracking and identifying neurons in C. elegans using semi-synthetic training

  1. Xinwei Yu
  2. Matthew S Creamer
  3. Francesco Randi
  4. Anuj Kumar Sharma Ph.D.
  5. Scott W Linderman
  6. Andrew Michael Leifer  Is a corresponding author
  1. Princeton University, United States
  2. Stanford University, United States

Abstract

We present an automated method to track and identify neurons in C. elegans, called 'fast Deep Neural Correspondence' or fDNC, based on the transformer network architecture. The model is trained once on empirically derived semi-synthetic data and then predicts neural correspondence across held-out real animals. The same pre-trained model both tracks neurons across time and identifies corresponding neurons across individuals. Performance is evaluated against hand-annotated datasets, including NeuroPAL [1]. Using only position information, the method achieves 79.1% accuracy at tracking neurons within an individual and 64.1% accuracy at identifying neurons across individuals. Accuracy at identifying neurons across individuals is even higher (78.2%) when the model is applied to a dataset published by another group [2]. Accuracy reaches 74.7% on our dataset when using color information from NeuroPAL. Unlike previous methods, fDNC does not require straightening or transforming the animal into a canonical coordinate system. The method is fast and predicts correspondence in 10ms making it suitable for future real-time applications.

Data availability

All datasets generated as part of this work have been deposited in a public Open Science Foundation repository DOI:10.17605/OSF.IO/T7DZU.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xinwei Yu

    Department of Physics, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew S Creamer

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Francesco Randi

    Department of Physics, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anuj Kumar Sharma Ph.D.

    Department of Physics, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5061-9731
  5. Scott W Linderman

    Department of Statistics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3878-9073
  6. Andrew Michael Leifer

    Department of Physics and Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    leifer@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5362-5093

Funding

Simons Foundation (543003)

  • Andrew Michael Leifer

Simons Foundation (697092)

  • Scott W Linderman

National Science Foundation (IOS-184537)

  • Andrew Michael Leifer

National Science Foundation (PHY-1734030)

  • Andrew Michael Leifer

National Institutes of Health (R21NS101629)

  • Andrew Michael Leifer

National Institutes of Health (1R01NS113119)

  • Scott W Linderman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,053
    views
  • 293
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xinwei Yu
  2. Matthew S Creamer
  3. Francesco Randi
  4. Anuj Kumar Sharma Ph.D.
  5. Scott W Linderman
  6. Andrew Michael Leifer
(2021)
Fast deep neural correspondence for tracking and identifying neurons in C. elegans using semi-synthetic training
eLife 10:e66410.
https://doi.org/10.7554/eLife.66410

Share this article

https://doi.org/10.7554/eLife.66410

Further reading

    1. Developmental Biology
    2. Neuroscience
    Denise M Poltavski, Alexander T Cunha ... Takako Makita
    Research Article

    Two major ligand-receptor signaling axes – endothelin Edn3 and its receptor Ednrb, and glial-derived neurotrophic factor (GDNF) and its receptor Ret – are required for migration of enteric nervous system (ENS) progenitors to the hindgut. Mutations in either component cause colonic aganglionosis, also called Hirschsprung disease. Here, we have used Wnt1Cre and Pax2Cre in mice to show that these driver lines label distinct ENS lineages during progenitor migration and in their terminal hindgut fates. Both Cre lines result in Hirschsprung disease when combined with conditional Ednrb or conditional Ret alleles. In vitro explant assays and analysis of lineage-labeled mutant embryos show that GDNF but not Edn3 is a migration cue for cells of both lineages. Instead, Edn3-Ednrb function is required in both for GDNF responsiveness albeit in different ways: by expanding the Ret+ population in the Pax2Cre lineage, and by supporting Ret function in Wnt1Cre-derived cells. Our results demonstrate that two distinct lineages of progenitors give rise to the ENS, and that these divergently utilize endothelin signaling to support migration to the hindgut.

    1. Neuroscience
    Jing Wang, Min Su ... Hailin Zhang
    Research Article

    The slow-intrinsic-pacemaker dopaminergic (DA) neurons originating in the ventral tegmental area (VTA) are implicated in various mood- and emotion-related disorders, such as anxiety, fear, stress and depression. Abnormal activity of projection-specific VTA DA neurons is the key factor in the development of these disorders. Here, we describe the crucial role of the NALCN and TRPC6, non-selective cation channels in mediating the subthreshold inward depolarizing current and driving the firing of action potentials of VTA DA neurons in physiological conditions. Furthermore, we demonstrate that down-regulation of TRPC6 protein expression in the VTA DA neurons likely contributes to the reduced activity of projection-specific VTA DA neurons in chronic mild unpredictable stress (CMUS) depressive mice. In consistent with these, selective knockdown of TRPC6 channels in the VTA DA neurons conferred mice with depression-like behavior. This current study suggests down-regulation of TRPC6 expression/function is involved in reduced VTA DA neuron firing and chronic stress-induced depression-like behavior of mice.