Quantitative live-cell imaging and computational modelling shed new light on endogenous WNT/CTNNB1 signaling dynamics

  1. Saskia M A de Man
  2. Gooitzen Zwanenburg  Is a corresponding author
  3. Tanne van der Wal
  4. Mark Hink  Is a corresponding author
  5. Renee van Amerongen  Is a corresponding author
  1. Swammerdam Institute for Life Sciences, University of Amsterdam, Netherlands
  2. Universiteit van Amsterdam, Netherlands

Abstract

WNT/CTNNB1 signaling regulates tissue development and homeostasis in all multicellular animals, but the underlying molecular mechanism remains incompletely understood. Specifically, quantitative insight into endogenous protein behavior is missing. Here we combine CRISPR/Cas9-mediated genome editing and quantitative live-cell microscopy to measure the dynamics, diffusion characteristics and absolute concentrations of fluorescently tagged, endogenous CTNNB1 in human cells under both physiological and oncogenic conditions. State-of-the-art imaging reveals that a substantial fraction of CTNNB1 resides in slow-diffusing cytoplasmic complexes, irrespective of the activation status of the pathway. This cytoplasmic CTNNB1 complex undergoes a major reduction in size when WNT/CTNNB1 is (hyper)activated. Based on our biophysical measurements we build a computational model of WNT/CTNNB1 signaling. Our integrated experimental and computational approach reveals that WNT pathway activation regulates the dynamic distribution of free and complexed CTNNB1 across different subcellular compartments through three regulatory nodes: the destruction complex, nucleocytoplasmic shuttling and nuclear retention.

Data availability

Source data: for numerical data points in Figures 2-5,7-8 are attached to this article. In addition a comprehensive overview of all numerical data (summary statistics; median, mean and 95% CI's) for the FCS and N&B experiments depicted in Figures 5, 7, 8 plus accompanying supplements and in Tables 1, 2 and 3) is provided in summary tables as Supplementary File 1.Raw data: Original FACS data (.fcs), Western blot data (.tif), confocal images (.tif), FCS data (.ptu- and .oif reference images), N&B data (.ptu/.tif and .oif reference images) have been provided on Open Science Framework (https://osf.io/dczx8/).Source code: scripts for the following have been made publicly available on Open Science Framework (https://osf.io/dczx8/), as referenced in the materials and methods section: Cell profiler segmentation pipeline (Figure 3), R script based on PlotsOfDifference to generate Figure 3 supplement 2 and supplementary movies 4-6, ImageJ N&B analysis script (Figures 5,7 and 8), R source code for the computational model (Figure 6)

The following data sets were generated

Article and author information

Author details

  1. Saskia M A de Man

    Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0906-5276
  2. Gooitzen Zwanenburg

    Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
    For correspondence
    Gooitzen.zwanenburg@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  3. Tanne van der Wal

    Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark Hink

    Universiteit van Amsterdam, Amsterdam, Netherlands
    For correspondence
    m.a.hink@uva.nl
    Competing interests
    The authors declare that no competing interests exist.
  5. Renee van Amerongen

    Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
    For correspondence
    r.vanamerongen@uva.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8808-2092

Funding

University of Amsterdam (MacGillavry fellowship)

  • Renee van Amerongen

KWF Kankerbestrijding (ANW 2013-6057)

  • Renee van Amerongen

KWF Kankerbestrijding (2015-8014)

  • Renee van Amerongen

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (864.13.002)

  • Renee van Amerongen

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (OCENW.KLEIN.169)

  • Renee van Amerongen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Felix Campelo, The Barcelona Institute of Science and Technology, Spain

Version history

  1. Received: January 11, 2021
  2. Accepted: June 29, 2021
  3. Accepted Manuscript published: June 30, 2021 (version 1)
  4. Version of Record published: August 5, 2021 (version 2)

Copyright

© 2021, de Man et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,726
    views
  • 430
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Saskia M A de Man
  2. Gooitzen Zwanenburg
  3. Tanne van der Wal
  4. Mark Hink
  5. Renee van Amerongen
(2021)
Quantitative live-cell imaging and computational modelling shed new light on endogenous WNT/CTNNB1 signaling dynamics
eLife 10:e66440.
https://doi.org/10.7554/eLife.66440

Share this article

https://doi.org/10.7554/eLife.66440

Further reading

    1. Cell Biology
    Mathieu C Husser, Nhat P Pham ... Alisa Piekny
    Tools and Resources

    Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.