Kinetic analysis of ASIC1a delineates conformational signaling from proton-sensing domains to the channel gate

  1. Sabrina Vullo
  2. Nicolas Ambrosio
  3. Jan P Kucera
  4. Olivier Bignucolo
  5. Stephan Kellenberger  Is a corresponding author
  1. University of Lausanne, Switzerland
  2. University of Bern, Switzerland

Abstract

Acid-sensing ion channels (ASICs) are neuronal Na+ channels that are activated by a drop in pH. Their established physiological and pathological roles, involving fear behaviors, learning, pain sensation and neurodegeneration after stroke, make them promising targets for future drugs. Currently, the ASIC activation mechanism is not understood. Here we used voltage-clamp fluorometry (VCF) combined with fluorophore-quencher pairing to determine the kinetics and direction of movements. We show that conformational changes with the speed of channel activation occur close to the gate and in more distant extracellular sites, where they may be driven by local protonation events. Further, we provide evidence for fast conformational changes in a pathway linking protonation sites to the channel pore, in which an extracellular interdomain loop interacts via aromatic residue interactions with the upper end of a transmembrane helix and would thereby open the gate.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files containing the source data of all figures are provided as supplementary files.

Article and author information

Author details

  1. Sabrina Vullo

    Department of biomedical Sciences, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Nicolas Ambrosio

    Department of biomedical Sciences, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Jan P Kucera

    Department of Physiology, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Olivier Bignucolo

    Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4735-049X
  5. Stephan Kellenberger

    Department of biomedical Sciences, University of Lausanne, Lausanne, Switzerland
    For correspondence
    Stephan.Kellenberger@unil.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1755-6198

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_172968)

  • Stephan Kellenberger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Ethics Statement: The study was performed in strict accordance with the Swiss federal law on animal welfare and approved by the committee on animal experimentation of the Canton de Vaud (Permit Number: VD1462.6).

Copyright

© 2021, Vullo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,081
    views
  • 181
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sabrina Vullo
  2. Nicolas Ambrosio
  3. Jan P Kucera
  4. Olivier Bignucolo
  5. Stephan Kellenberger
(2021)
Kinetic analysis of ASIC1a delineates conformational signaling from proton-sensing domains to the channel gate
eLife 10:e66488.
https://doi.org/10.7554/eLife.66488

Share this article

https://doi.org/10.7554/eLife.66488

Further reading

    1. Neuroscience
    Sergio Casas-Tinto, Nuria Garcia-Guillen, María Losada-Perez
    Short Report

    As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.

    1. Neuroscience
    Mihály Vöröslakos, Yunchang Zhang ... György Buzsáki
    Tools and Resources

    Brain states fluctuate between exploratory and consummatory phases of behavior. These state changes affect both internal computation and the organism’s responses to sensory inputs. Understanding neuronal mechanisms supporting exploratory and consummatory states and their switching requires experimental control of behavioral shifts and collecting sufficient amounts of brain data. To achieve this goal, we developed the ThermoMaze, which exploits the animal’s natural warmth-seeking homeostatic behavior. By decreasing the floor temperature and selectively heating unmarked areas, we observed that mice avoided the aversive state by exploring the maze and finding the warm spot. In its design, the ThermoMaze is analogous to the widely used water maze but without the inconvenience of a wet environment and, therefore, allows the collection of physiological data in many trials. We combined the ThermoMaze with electrophysiology recording, and report that spiking activity of hippocampal CA1 neurons during sharp-wave ripple events encode the position of mice. Thus, place-specific firing is not confined to locomotion and associated theta oscillations but persist during waking immobility and sleep at the same location. The ThermoMaze will allow for detailed studies of brain correlates of immobility, preparatory–consummatory transitions, and open new options for studying behavior-mediated temperature homeostasis.