Abstract

Adrenergic stimulation of brown adipocytes alters mitochondrial dynamics, including the mitochondrial fusion protein optic atrophy 1 (OPA1). However, direct mechanisms linking OPA1 to brown adipose tissue (BAT) physiology are incompletely understood. We utilized a mouse model of selective OPA1 deletion in BAT (OPA1 BAT KO) to investigate the role of OPA1 in thermogenesis. OPA1 is required for cold-induced activation of thermogenic genes in BAT. Unexpectedly, OPA1 deficiency induced fibroblast growth factor 21 (FGF21) as a BATokine in an activating transcription factor 4 (ATF4)-dependent manner. BAT-derived FGF21 mediates an adaptive response, by inducing browning of white adipose tissue, increasing resting metabolic rates, and improving thermoregulation. However, mechanisms independent of FGF21, but dependent on ATF4 induction, promote resistance to diet-induced obesity in OPA1 BAT KO mice. These findings uncover a homeostatic mechanism of BAT-mediated metabolic protection governed in part by an ATF4-FGF21 axis, that is activated independently of BAT thermogenic function.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Renata O Pereira

    Internal Medicine, University of Iowa, Iowa City, United States
    For correspondence
    renata-pereira@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5809-4669
  2. Alex Marti

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Angela Crystal Olvera

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Satya Murthy Tadinada

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah Hartwick Bjorkman

    Obstetrics and Gynecology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Eric Thomas Weatherford

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Donald A Morgan

    Neuroscience and Pharmacology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael Westphal

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Pooja H Patel

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5345-0158
  10. Ana Karina Kirby

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Rana Hewezi

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. William Bùi Trần

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Luis Miguel García-Peña

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8718-6490
  14. Rhonda A Souvenir

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8880-2483
  15. Monika Mittal

    Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Christopher M Adams

    Department of Internal Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Kamal Rahmouni

    Pharmacology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Matthew J Potthoff

    Pharmacology, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. E Dale Abel

    Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5290-0738

Funding

National Institutes of Health (HL127764)

  • E Dale Abel

National Institutes of Health (HL112413)

  • E Dale Abel

American Heart Association (20SFRN35120123)

  • E Dale Abel

American Heart Association (15SDG25710438)

  • Renata O Pereira

National Institutes of Health (DK125405)

  • Renata O Pereira

National Institutes of Health (T32DK112751)

  • Sarah Hartwick Bjorkman

National Institutes of Health (1R25GM116686)

  • Luis Miguel García-Peña

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#8051408 and 0032294) of the University of Iowa.

Reviewing Editor

  1. Joel K Elmquist, University of Texas Southwestern Medical Center, United States

Version history

  1. Received: January 13, 2021
  2. Accepted: May 2, 2021
  3. Accepted Manuscript published: May 4, 2021 (version 1)
  4. Version of Record published: May 17, 2021 (version 2)

Copyright

© 2021, Pereira et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,562
    Page views
  • 458
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Renata O Pereira
  2. Alex Marti
  3. Angela Crystal Olvera
  4. Satya Murthy Tadinada
  5. Sarah Hartwick Bjorkman
  6. Eric Thomas Weatherford
  7. Donald A Morgan
  8. Michael Westphal
  9. Pooja H Patel
  10. Ana Karina Kirby
  11. Rana Hewezi
  12. William Bùi Trần
  13. Luis Miguel García-Peña
  14. Rhonda A Souvenir
  15. Monika Mittal
  16. Christopher M Adams
  17. Kamal Rahmouni
  18. Matthew J Potthoff
  19. E Dale Abel
(2021)
OPA1 deletion in brown adipose tissue Improves thermoregulation and systemic metabolism via FGF21
eLife 10:e66519.
https://doi.org/10.7554/eLife.66519

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Ian R Outhwaite, Sukrit Singh ... Markus A Seeliger
    Research Article

    Kinase inhibitors are successful therapeutics in the treatment of cancers and autoimmune diseases and are useful tools in biomedical research. However, the high sequence and structural conservation of the catalytic kinase domain complicates the development of selective kinase inhibitors. Inhibition of off-target kinases makes it difficult to study the mechanism of inhibitors in biological systems. Current efforts focus on the development of inhibitors with improved selectivity. Here, we present an alternative solution to this problem by combining inhibitors with divergent off-target effects. We develop a multicompound-multitarget scoring (MMS) method that combines inhibitors to maximize target inhibition and to minimize off-target inhibition. Additionally, this framework enables optimization of inhibitor combinations for multiple on-targets. Using MMS with published kinase inhibitor datasets we determine potent inhibitor combinations for target kinases with better selectivity than the most selective single inhibitor and validate the predicted effect and selectivity of inhibitor combinations using in vitro and in cellulo techniques. MMS greatly enhances selectivity in rational multitargeting applications. The MMS framework is generalizable to other non-kinase biological targets where compound selectivity is a challenge and diverse compound libraries are available.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Rui-Qiu Yang, Yong-Hong Chen ... Cheng-Gang Zou
    Research Article Updated

    An imbalance of the gut microbiota, termed dysbiosis, has a substantial impact on host physiology. However, the mechanism by which host deals with gut dysbiosis to maintain fitness remains largely unknown. In Caenorhabditis elegans, Escherichia coli, which is its bacterial diet, proliferates in its intestinal lumen during aging. Here, we demonstrate that progressive intestinal proliferation of E. coli activates the transcription factor DAF-16, which is required for maintenance of longevity and organismal fitness in worms with age. DAF-16 up-regulates two lysozymes lys-7 and lys-8, thus limiting the bacterial accumulation in the gut of worms during aging. During dysbiosis, the levels of indole produced by E. coli are increased in worms. Indole is involved in the activation of DAF-16 by TRPA-1 in neurons of worms. Our finding demonstrates that indole functions as a microbial signal of gut dysbiosis to promote fitness of the host.