Dual expression of Atoh1 and Ikzf2 promotes transformation of adult cochlear supporting cells into outer hair cells

Abstract

Mammalian cochlear outer hair cells (OHCs) are essential for hearing. Severe hearing impairment follows OHC degeneration. Previous attempts at regenerating new OHCs from cochlear supporting cells (SCs) have been unsuccessful, notably lacking expression of the key OHC motor protein, Prestin. Thus, regeneration of Prestin+ OHCs represents a barrier to restore auditory function in vivo. Here, we reported the successful in vivo conversion of adult mouse cochlear SCs into Prestin+ OHC-like cells through the concurrent induction of two key transcriptional factors known to be necessary for OHC development: Atoh1 and Ikzf2. Single cell RNA sequencing revealed the upregulation of 729 OHC genes and downregulation of 331 SC genes in OHC-like cells. The resulting differentiation status of these OHC-like cells was much more advanced than previously achieved. This study thus established an efficient approach to induce the regeneration of Prestin+ OHCs, paving the way for in vivo cochlear repair via SC transdifferentiation.

Data availability

Sequencing data have been deposited in GEO under accession codes: GSE161156.

The following previously published data sets were used

Article and author information

Author details

  1. Suhong Sun

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    Suhong Sun, We filed an auditory hair cell regeneration patent based on the key findings of this manuscript..
  2. Shuting Li

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    Shuting Li, We filed an auditory hair cell regeneration patent based on the key findings of this manuscript..
  3. Zhengnan Luo

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    Zhengnan Luo, We filed an auditory hair cell regeneration patent based on the key findings of this manuscript..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8204-6277
  4. Minhui Ren

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    Minhui Ren, We filed an auditory hair cell regeneration patent based on the key findings of this manuscript..
  5. Shunji He

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    Shunji He, We filed an auditory hair cell regeneration patent based on the key findings of this manuscript..
  6. Guangqin Wang

    Institute of Neuroscience, State Key Laboratory of Neuroscience,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    Guangqin Wang, We filed an auditory hair cell regeneration patent based on the key findings of this manuscript..
  7. Zhiyong Liu

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    Zhiyongliu@ion.ac.cn
    Competing interests
    Zhiyong Liu, We filed an auditory hair cell regeneration patent based on the key findings of this manuscript..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9675-1233

Funding

National Natural Science Foundation of China (81771012)

  • Zhiyong Liu

Ministry of Science and Technology of the People's Republic of China (2017YFA0103901)

  • Zhiyong Liu

Chinese Academy of Sciences (XDB32060100)

  • Zhiyong Liu

Shanghai Municipal Bureau of Quality and Technical Supervision (2018SHZDZX05)

  • Zhiyong Liu

Shanghai Jiao Tong University (SSMU-ZLCX20180601)

  • Zhiyong Liu

Boehringer Ingelheim (DE811138149)

  • Zhiyong Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were bred and raised in SPF level animal rooms and animal procedures were performed according to guidelines (NA-032-2019) of the IACUC of Institute of Neuroscience (ION), Chinese Academy of Sciences.

Copyright

© 2021, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,558
    views
  • 495
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Suhong Sun
  2. Shuting Li
  3. Zhengnan Luo
  4. Minhui Ren
  5. Shunji He
  6. Guangqin Wang
  7. Zhiyong Liu
(2021)
Dual expression of Atoh1 and Ikzf2 promotes transformation of adult cochlear supporting cells into outer hair cells
eLife 10:e66547.
https://doi.org/10.7554/eLife.66547

Share this article

https://doi.org/10.7554/eLife.66547

Further reading

    1. Developmental Biology
    Shannon H Carroll, Sogand Schafer ... Eric C Liao
    Research Article

    Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension (CE) during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar CE defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2-specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Overexpression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.

    1. Developmental Biology
    Dena Goldblatt, Basak Rosti ... David Schoppik
    Research Article

    Sensorimotor reflex circuits engage distinct neuronal subtypes, defined by precise connectivity, to transform sensation into compensatory behavior. Whether and how motor neuron populations specify the subtype fate and/or sensory connectivity of their pre-motor partners remains controversial. Here, we discovered that motor neurons are dispensable for proper connectivity in the vestibular reflex circuit that stabilizes gaze. We first measured activity following vestibular sensation in pre-motor projection neurons after constitutive loss of their extraocular motor neuron partners. We observed normal responses and topography indicative of unchanged functional connectivity between sensory neurons and projection neurons. Next, we show that projection neurons remain anatomically and molecularly poised to connect appropriately with their downstream partners. Lastly, we show that the transcriptional signatures that typify projection neurons develop independently of motor partners. Our findings comprehensively overturn a long-standing model: that connectivity in the circuit for gaze stabilization is retrogradely determined by motor partner-derived signals. By defining the contribution of motor neurons to specification of an archetypal sensorimotor circuit, our work speaks to comparable processes in the spinal cord and advances our understanding of principles of neural development.