Matriptase activation of Gq drives epithelial disruption and inflammation via RSK and DUOX

  1. Jiajia Ma
  2. Claire A Scott
  3. Ying Na Ho
  4. Harsha Mahabaleshwar
  5. Katherine S Marsay
  6. Changqing Zhang
  7. Christopher KJ Teow
  8. Ser Sue Ng
  9. Weibin Zhang
  10. Vinay Tergaonkar
  11. Lynda J Partridge
  12. Sudipto Roy
  13. Enrique Amaya
  14. Tom J Carney  Is a corresponding author
  1. Nanyang Technological University, Singapore
  2. A*STAR (Agency for Science, Technology and Research), Singapore
  3. Institite of molecular and cell biology, Singapore
  4. University of Sheffield, United Kingdom
  5. University of Manchester, United Kingdom

Abstract

Epithelial tissues are primed to respond to insults by activating epithelial cell motility and rapid inflammation. Such responses are also elicited upon overexpression of the membrane bound protease, Matriptase, or mutation of its inhibitor, Hai1. Unrestricted Matriptase activity also predisposes to carcinoma. How Matriptase leads to these cellular outcomes is unknown. We demonstrate that zebrafish hai1a mutants show increased H2O2, NfkB signalling, and IP3R -mediated calcium flashes, and that these promote inflammation, but do not generate epithelial cell motility. In contrast, inhibition of the Gq subunit in hai1a mutants rescues both the inflammation and epithelial phenotypes, with the latter recapitulated by the DAG analogue, PMA. We demonstrate that hai1a has elevated MAPK pathway activity, inhibition of which rescues the epidermal defects. Finally, we identify RSK kinases as MAPK targets disrupting adherens junctions in hai1a mutants. Our work maps novel signalling cascades mediating the potent effects of Matriptase on epithelia, with implications for tissue damage response and carcinoma progression.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Jiajia Ma

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  2. Claire A Scott

    Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Ying Na Ho

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Harsha Mahabaleshwar

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Katherine S Marsay

    Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Changqing Zhang

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Christopher KJ Teow

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Ser Sue Ng

    Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  9. Weibin Zhang

    Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  10. Vinay Tergaonkar

    Cancer Genetics and Therapeutics, Institite of molecular and cell biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  11. Lynda J Partridge

    Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Sudipto Roy

    Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  13. Enrique Amaya

    Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Tom J Carney

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    For correspondence
    tcarney@ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2371-1924

Funding

Ministry of Education - Singapore (2015-T1-001-035)

  • Jiajia Ma
  • Tom J Carney

Ministry of Education - Singapore (MOE2016-T3-1-005)

  • Harsha Mahabaleshwar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Fish were housed at the IMCB and the NTU zebrafish facilities under IACUC numbers #140924 and #A18002 respectively, and according to the guidelines of the National Advisory Committee for Laboratory Animal Research. Approval was provided by the Institutional Animal Care and Use Committees of the Biological Resource Centre (IMCB) and NTU according to Agri-Food and Veterinary Authority (AVA) Rules and the National Advisory Committee for Laboratory Animal Research (NACLAR) requirments.

Copyright

© 2021, Ma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,111
    views
  • 230
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jiajia Ma
  2. Claire A Scott
  3. Ying Na Ho
  4. Harsha Mahabaleshwar
  5. Katherine S Marsay
  6. Changqing Zhang
  7. Christopher KJ Teow
  8. Ser Sue Ng
  9. Weibin Zhang
  10. Vinay Tergaonkar
  11. Lynda J Partridge
  12. Sudipto Roy
  13. Enrique Amaya
  14. Tom J Carney
(2021)
Matriptase activation of Gq drives epithelial disruption and inflammation via RSK and DUOX
eLife 10:e66596.
https://doi.org/10.7554/eLife.66596

Share this article

https://doi.org/10.7554/eLife.66596

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.