Modeling the impact of racial and ethnic disparities on COVID-19 epidemic dynamics

  1. Kevin C Ma  Is a corresponding author
  2. Tigist F Menkir
  3. Stephen M Kissler
  4. Yonatan H Grad
  5. Marc Lipsitch
  1. Harvard TH Chan School of Public Health, United States

Abstract

Background: The impact of variable infection risk by race and ethnicity on the dynamics of SARS CoV-2 spread is largely unknown.

Methods: Here, we fit structured compartmental models to seroprevalence data from New York State and analyze how herd immunity thresholds (HITs), final sizes, and epidemic risk changes across groups.

Results: A simple model where interactions occur proportionally to contact rates reduced the HIT, but more realistic models of preferential mixing within groups increased the threshold toward the value observed in homogeneous populations. Across all models, the burden of infection fell disproportionately on minority populations: in a model fit to Long Island serosurvey and census data, 81% of Hispanics or Latinos were infected when the HIT was reached compared to 34% of non-Hispanic whites.

Conclusions: Our findings, which are meant to be illustrative and not best estimates, demonstrate how racial and ethnic disparities can impact epidemic trajectories and result in unequal distributions of SARS-CoV-2 infection.

Funding: K.C.M. was supported by National Science Foundation GRFP grant DGE1745303. Y.H.G. and M.L. were funded by the Morris-Singer Foundation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Kevin C Ma

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    For correspondence
    kevinchenma@g.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4326-2911
  2. Tigist F Menkir

    Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    No competing interests declared.
  3. Stephen M Kissler

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3062-7800
  4. Yonatan H Grad

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5646-1314
  5. Marc Lipsitch

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    Marc Lipsitch, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1504-9213

Funding

National Science Foundation (DGE1745303)

  • Kevin C Ma

Morris-Singer Foundation

  • Yonatan H Grad
  • Marc Lipsitch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Ma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,499
    views
  • 364
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin C Ma
  2. Tigist F Menkir
  3. Stephen M Kissler
  4. Yonatan H Grad
  5. Marc Lipsitch
(2021)
Modeling the impact of racial and ethnic disparities on COVID-19 epidemic dynamics
eLife 10:e66601.
https://doi.org/10.7554/eLife.66601

Share this article

https://doi.org/10.7554/eLife.66601

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Felix Lankester, Tito J Kibona ... Sarah Cleaveland
    Research Article

    Lack of data on the aetiology of livestock diseases constrains effective interventions to improve livelihoods, food security and public health. Livestock abortion is an important disease syndrome affecting productivity and public health. Several pathogens are associated with livestock abortions but across Africa surveillance data rarely include information from abortions, little is known about aetiology and impacts, and data are not available to inform interventions. This paper describes outcomes from a surveillance platform established in Tanzania spanning pastoral, agropastoral and smallholder systems to investigate causes and impacts of livestock abortion. Abortion events were reported by farmers to livestock field officers (LFO) and on to investigation teams. Events were included if the research team or LFO could attend within 72 hr. If so, samples and questionnaire data were collected to investigate (a) determinants of attribution; (b) patterns of events, including species and breed, previous abortion history, and seasonality; (c) determinants of reporting, investigation and attribution; (d) cases involving zoonotic pathogens. Between 2017–2019, 215 events in cattle (n=71), sheep (n=44), and goats (n=100) were investigated. Attribution, achieved for 19.5% of cases, was significantly affected by delays in obtaining samples. Histopathology proved less useful than PCR due to rapid deterioration of samples. Vaginal swabs provided practical and sensitive material for pathogen detection. Livestock abortion surveillance, even at a small scale, can generate valuable information on causes of disease outbreaks, reproductive losses and can identify pathogens not easily captured through other forms of livestock disease surveillance. This study demonstrated the feasibility of establishing a surveillance system, achieved through engagement of community-based field officers, establishment of practical sample collection and application of molecular diagnostic platforms.

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Tianyu Zhao, Hui Li ... Li Chen
    Research Article

    Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.